I3 Venture awards info

Emory is full of fledgling biomedical proto-companies. Some of them are actual corporations with employees, while others are ideas that need a push to get them to that point. Along with the companies highlighted by the Emory Biotech Consulting Club, Dean Sukhatme’s recent announcement of five I3 Venture research awards gives more examples of early stage research projects with commercial potential. This is the third round of the I3 awards; the first two were Wow! Read more

Take heart, Goldilocks -- and get more sleep

Sleeping too little or too much increases the risk of cardiovascular events and death in those with coronary artery disease, according to a new paper from Emory Clinical Cardiovascular Research Institute. Others have observed a similar U-shaped risk curve in the general population, with respect to sleep duration. The new study, published in American Journal of Cardiology, extends the finding to people who were being evaluated for coronary artery disease. Arshed Quyyumi, MD and colleagues analyzed Read more

Repurposing a transplant drug for bone growth

The transplant immunosuppressant drug FK506, also known as tacrolimus or Prograf, can stimulate bone formation in both cell culture and animal Read more

progenitor cells

A path to treatment of lymphedema

Lymphedema, or swelling because of the impaired flow of lymph fluid, can occur as a consequence of cancer or cancer treatment. Chemotherapy can damage lymph ducts, and often surgeons remove lymph nodes that may be affected by cancer metastasis. Lymphedema can result in painful swelling, impaired mobility and changes in appearance.

Young-sup Yoon, MD, PhD

Emory scientists, led by cardiologist and stem cell biologist Young-sup Yoon, have shown that they can isolate progenitor cells for the lining of lymph ducts. This finding could lead to doctors being able to regenerate and repair lymph ducts using a patient’s own cells. The results are described in a paper published recently in the journal Circulation.

The authors used the cell surface marker podoplanin as a handle for isolating the progenitor cells from bone marrow. Previous research has demonstrated that podoplanin is essential for the development of the lymphatic system.
In the paper, the authors use several animal models to show that the progenitor cells could contribute to the formation of new lymph ducts, both by becoming part of the lymph ducts and by stimulating the growth of nearby cells.

“This lymphatic vessel–forming capability can be used for the treatment of lymphedema or chronic unhealed wounds,” Yoon says.

Isolated lymphatic endothelial cells (red) incorporate into lymph ducts (green) in a model of wound healing in mice.

The authors also show that mice with tumors show an increase in the number of this type of circulating progenitor cells. This suggests that tumors send out signals that encourage lymph duct growth – a parallel to the well-known ability of tumors to drive growth of blood vessels nearby. Yoon says the presence of these cells could be a marker for tumor growth and metastasis. Because tumors often metastasize along lymph ducts and into lymph nodes, studying this type of cells could lead to new targets for blocking tumor metastasis.

A recent review in the journal Genes & Development summarizes additional functions of the lymphatic system in fat metabolism, obesity, inflammation, and the regulation of salt storage in hypertension.

Posted on by Quinn Eastman in Cancer Leave a comment

Peripheral artery disease: can help come from the bone marrow?

Peripheral artery disease affects millions of people in the United States. It’s basically hardening of the arteries (atherosclerosis) leading to problems with getting enough blood to the limbs. Symptoms of severe PAD include leg pain that doesn’t go away once exertion stops and wounds that heal slowly or not at all.

Lifestyle changes, medication and surgery can address some cases of PAD, but often the disease is not recognized until it has advanced considerably. At Emory, cardiologist Arshed Quyyumi has been exploring whether a patient’s own bone marrow cells can repair the arteries in his or her limbs.

Read more

Posted on by Quinn Eastman in Heart Leave a comment