Warren symposium follows legacy of geneticist giant

If we want to understand how the brain creates memories, and how genetic disorders distort the brain’s machinery, then the fragile X gene is an ideal place to start. That’s why the Stephen T. Warren Memorial Symposium, taking place November 28-29 at Emory, will be a significant event for those interested in neuroscience and genetics. Stephen T. Warren, 1953-2021 Warren, the founding chair of Emory’s Department of Human Genetics, led an international team that discovered Read more

Mutations in V-ATPase proton pump implicated in epilepsy syndrome

Why and how disrupting V-ATPase function leads to epilepsy, researchers are just starting to figure Read more

Tracing the start of COVID-19 in GA

At a time when COVID-19 appears to be receding in much of Georgia, it’s worth revisiting the start of the pandemic in early 2020. Emory virologist Anne Piantadosi and colleagues have a paper in Viral Evolution on the earliest SARS-CoV-2 genetic sequences detected in Georgia. Analyzing relationships between those virus sequences and samples from other states and countries can give us an idea about where the first COVID-19 infections in Georgia came from. We can draw Read more

hemophilia

Tapping evolution to improve biotech products

Scientists can improve protein-based drugs by reaching into the evolutionary past, a paper published this week in Nature Biotechnology proposes.

As a proof of concept for this approach, the research team from Emory, Children’s Healthcare of Atlanta and Georgia Tech showed how “ancestral sequence reconstruction” or ASR can guide engineering of the blood clotting protein known as factor VIII, which is deficient in the inherited disorder hemophilia A.

fviii_2r7e

Structure of Factor VIII

Other common protein-based drugs include monoclonal antibodies, insulin, human growth hormone and white blood cell stimulating factors given to cancer patients. The authors say that ASR-based engineering could be applied to other recombinant proteins produced outside the human body, as well as gene therapy.

It has been possible to produce human factor VIII in recombinant form since the early 1990s. However, current factor VIII products still have problems: they don’t last long in the blood, they frequently stimulate immune responses in the recipient, and they are difficult and costly to manufacture.

Experimental hematologist and gene therapist Chris Doering, PhD and his colleagues already had some success in addressing these challenges by filling in some of the sequence of human factor VIII with the same protein from pigs.

“We hypothesized that human factor VIII has evolved to be short lived in the blood to reduce the risk of thrombosis,” Doering says. “And we reasoned that by going even farther back in evolutionary history, it should be possible to find more stable, potent relatives.”

Doering is associate professor of pediatrics at Emory University School of Medicine and Aflac Cancer and Blood Disorders Center of Children’s Healthcare of Atlanta. The first author of the paper is former Molecular and Systems Pharmacology graduate student Philip Zakas, PhD.

Doering’s lab teamed up with Trent Spencer, PhD, director of cell and gene therapy for the Aflac Cancer and Blood Disorders Center, and Eric Gaucher, PhD, associate professor of biological sciences at Georgia Tech, who specializes in ASR. (Gaucher has also worked with Emory biochemist Eric Ortlund – related item on ASR from Gaucher)

ASR involves reaping the recent harvest of genome sequences from animals as varied as mice, cows, goats, whales, dogs, cats, horses, bats and elephants. Using this information, scientists reconstruct a plausible ancestral sequence for a protein in early mammals. They then tweak the human protein, one amino acid building block at a time, toward the ancestral sequence to see what kinds of effects the changes could have. Read more

Posted on by Quinn Eastman in Immunology, Uncategorized Leave a comment

A milestone in treating hemophilia

Hematologist Pete Lollar has devoted his career to developing treatments for hemophilia A, which is caused by a lack of blood clotting factor VIII. Lollar is a professor of pediatrics in Emory School of Medicine and director of hemostasis research at Children’s Healthcare of Atlanta. Last week, Lollar was honored by Emory’s Office of Technology Transfer for setting in motion research that has progressed to a phase III clinical trial of a new product, OBI-1, a special form of factor VIII.

John "Pete" Lollar, MD

Along with this milestone came a dramatic story, described by OTT’s assistant director Cale Lennon. The first patient to enroll in the clinical trial did so in November 2010 because of what appeared to be acquired hemophilia, which led to severe uncontrolled hemorrhaging. As a result of treatment with OBI-1, developed by Lollar and his research team at Emory, the patient’s bleeding was brought under control and it saved his life. He was treated at Indiana Hemophilia and Thrombosis Center in Indianapolis.

Acquired hemophilia is a challenge for doctors to deal with because it is such a surprise. Unlike people with inherited hemophilia, those with acquired hemophilia do not have a personal or family history of bleeding episodes. Their immune systems are somehow provoked into making antibodies against their own clotting factor VIII. These antibodies also appear over time in about 30 percent of patients with inherited hemophilia who take standard clotting factors.

OBI-1, a special form of clotting factor VIII, is less of a red flag to the immune system. This allows treatment of patients who cannot benefit from standard clotting factor VIII, because of the presence of auto-antibodies.

Emory originally licensed OBI-1 to Octagen Corporation, a “homegrown” startup company founded in 1997. Octagen sublicensed the OBI-1 technology to a French biotechnology firm, Ipsen Biopharm in 1998. Over the next decade, Octagen and Ipsen pursued preclinical and initial clinical studies and completed a phase II clinical trial in 2006. Ipsen purchased the OBI-1 program outright in May 2008.

In January 2010, Ipsen developed a partnership agreement with Inspiration Biopharmaceuticals, which was founded by two businessmen whose children have hemophilia. Under the agreement’s terms, Inspiration licensed OBI-1 from Ipsen and is responsible for its clinical development, regulatory approval and commercialization.

Posted on by Quinn Eastman in Uncategorized Leave a comment