Warren symposium follows legacy of geneticist giant

If we want to understand how the brain creates memories, and how genetic disorders distort the brain’s machinery, then the fragile X gene is an ideal place to start. That’s why the Stephen T. Warren Memorial Symposium, taking place November 28-29 at Emory, will be a significant event for those interested in neuroscience and genetics. Stephen T. Warren, 1953-2021 Warren, the founding chair of Emory’s Department of Human Genetics, led an international team that discovered Read more

Mutations in V-ATPase proton pump implicated in epilepsy syndrome

Why and how disrupting V-ATPase function leads to epilepsy, researchers are just starting to figure Read more

Tracing the start of COVID-19 in GA

At a time when COVID-19 appears to be receding in much of Georgia, it’s worth revisiting the start of the pandemic in early 2020. Emory virologist Anne Piantadosi and colleagues have a paper in Viral Evolution on the earliest SARS-CoV-2 genetic sequences detected in Georgia. Analyzing relationships between those virus sequences and samples from other states and countries can give us an idea about where the first COVID-19 infections in Georgia came from. We can draw Read more

Greg Berns

Study looks at teenage brain and risk-taking

A new study using brain imaging to study teen behavior indicates that adolescents who engage in dangerous activities have frontal white matter tracts that are more adult in form than their more conservative peers.

The brain goes through a course of maturation during adolescence and does not reach its adult form until the mid-twenties. A long-standing theory of adolescent behavior has assumed that this delayed brain maturation is the cause of impulsive and dangerous decisions in adolescence. The new study, using a new form of brain imaging, calls into question this theory.

In order to better understand the relationship between high risk-taking and the brain’s development, Emory University and Emory School of Medicine neuroscientists used a form of magnetic resonance imaging (MRI) called diffusion tensor imaging (DTI) to measure structural changes in white matter in the brain. The study’s findings are published in the Aug. 26, 2009 PLoS ONE.

“In the past, studies have focused on the pattern of gray matter density from childhood to early adulthood, says Gregory Berns, MD, PhD, principal investigator and professor of Psychiatry and Neuroeconomics at Emory University and director of the Center for Neuropolicy. “With new technology, we were able to develop the first study looking at how development of white matter relates to activities in the real world.”

Gray matter is the part of the brain made up of neurons, while white matter connects neurons to each other. As the brain matures, white matter becomes denser and more organized. Gray matter and white matter follow different trajectories. Both are important for understanding brain function.

Berns suggests that doing adult-like activities requires sophisticated skills.

“Society is a lot different now than it was 100 years ago when teens were expected to go to work and raise a family,” says Berns. “Now, adolescents aren’t expected to act like adults until they are in their twenties, when they have finished their education and found a career. Listen to Berns discuss the changing definition of adulthood.

Posted on by admin in Uncategorized Leave a comment