Are immune-experienced mice better for sepsis research?

The goal is to make mouse immune systems and microbiomes more complex and more like those in humans, so the mice they can better model the deadly derangement of Read more

One more gene between us and bird flu

We’re always in favor of stopping a massive viral pandemic, or at least knowing more about what might make one Read more

Antibody diversity mutations come from a vast genetic library

The antibody-honing process of somatic hypermutation is not Read more

Frailty

Frailty: we know it when we can measure it

One of Lab Land’s regular features is a post exploring a biomedical term that seems to be appearing frequently in connection with Emory research. This month I’d like to focus on frailty, which has been an important concept in treating elderly patients for some time. (This piece in The Atlantic nudged me into it.) Assessing frailty is emerging as a way for surgeons to predict post-operative complications.

Several teams of researchers have been trying to develop a standardized way of measuring frailty to aid in weighing the risks and benefits of surgery. Frailty may seem like a subjective quality (echoing Supreme Court Justice Potter Stewart’s remarks on obscenity: “I know it when I see it”) but if frailty can be defined objectively, doctors and patients can use it to help in decision-making.

Frailty can be thought of as a decrease in physiological reserve or a decrease in the ability to recover from an infection or injury. Much of the credit for developing the concept of frailty should go to Linda Fried, now dean of Columbia’s school of public health. While at Johns Hopkins, her team developed the Hopkins Frailty Score: a composite based on recent weight loss, self-reported exhaustion, low daily activity levels, low grip strength and slow gait. Read more

Posted on by Quinn Eastman in Uncategorized Leave a comment