Transition to exhaustion: clues for cancer immunotherapy

Research on immune cells “exhausted” by chronic viral infection provides clues on how to refine cancer immunotherapy. The results were published Tuesday, Dec. 3 in Immunity. Scientists at Emory Vaccine Center, led by Rafi Ahmed, PhD, have learned about exhausted CD8 T cells, based on studying mice with chronic viral infections. In the presence of persistent virus or cancer, CD8 T cells lose much of their ability to fight disease, and display inhibitory checkpoint proteins Read more

Radiologists wrestle with robots - ethically

Emory bioethicist John Banja says: don’t believe the hype about AI replacing Read more

Opioids: crunching the Tweets

The aim is to be able to spot patterns of overdoses faster than prescription drug monitoring Read more

B-raf

Melanoma mutation rewires cell metabolism

A mutation found in most melanomas rewires cancer cells’ metabolism, making them dependent on a ketogenesis enzyme, researchers at Winship Cancer Institute of Emory University have discovered.

The V600E mutation in the gene B-raf is present in most melanomas, in some cases of colon and thyroid cancer, and in the hairy cell form of leukemia. Existing drugs such as vemurafenib target the V600E mutation — the finding points to potential alternatives or possible strategies for countering resistance. It may also explain why the V600E mutation in particular is so common in melanomas.

Researchers led by Jing Chen and Sumin Kang have found that by promoting ketogenesis, the V600E mutation stimulates production of a chemical, acetoacetate, which amplifies the mutation’s growth-promoting effects. (A feedback mechanism! Screech!)

The results were published Thursday, July 2 in Molecular Cell.

More on this paper here.

Posted on by Quinn Eastman in Cancer 1 Comment