Insights into Parkinson's balance problems

In PD, disorganized sensorimotor signals cause muscles in the limbs to contract, such that both a muscle promoting a motion and its antagonist muscle are Read more

Cajoling brain cells to dance

“Flicker” treatment is a striking non-pharmaceutical approach aimed at slowing or reversing Alzheimer’s disease. It represents a reversal of EEG: not only recording brain waves, but reaching into the brain and cajoling cells to dance. One neuroscientist commentator called the process "almost too fantastic to believe." With flashing lights and buzzing sounds, researchers think they can get immune cells in the brain to gobble up more amyloid plaques, the characteristic clumps of protein seen in Read more

synapse

Focus on mitochondria in schizophrenia research

Despite advances in genomics in recent years, schizophrenia remains one of the most complex challenges of both genetics and neuroscience. The chromosomal abnormality 22q11 deletion syndrome, also known as DiGeorge syndrome, offers a way in, since it is one of the strongest genetic risk factors for schizophrenia.

Out of dozens of genes within the 22q11 deletion, several encode proteins found in mitochondria. A team of Emory scientists, led by cell biologist Victor Faundez, recently analyzed the network of proteins found in human cells, both from individuals affected by 22q11 deletion syndrome and their healthy relatives.

The results are published in Journal of Neuroscience. Note: this is a sprawling paper, involving both proteomics (courtesy of Nick Seyfried, whose Emory epithet is “wizard”) and mutant Drosophila fruit flies. There are four co-first authors: Avanti Gokhale, Cortnie Hartwig, Amanda Freeman and Julia Bassell.

Victor Faundez, PhD

Mitochondrial proteins are important for keeping cells fueled up and in metabolic balance, but how does altering them affect the brain in a way that leads to schizophrenia? That’s the overall question: how do changes in the miniature power plants within the cell affect synapses, the junctions between cells?

The scientists were focusing on one particular mitochondrial protein, SLC25A1, whose corresponding gene is in the 22q11 deletion. Faundez says that SCL25A1 has been largely ignored by other scientists studying 22q11.

“We think SLC25A1 exerts a powerful influence on the neurodevelopmental phenotypes in 22q11,” he says. “Our main focus forward is going to be the function that mitochondria play in synapse biology.” Read more

Posted on by Quinn Eastman in Neuro Leave a comment