Warren symposium follows legacy of geneticist giant

If we want to understand how the brain creates memories, and how genetic disorders distort the brain’s machinery, then the fragile X gene is an ideal place to start. That’s why the Stephen T. Warren Memorial Symposium, taking place November 28-29 at Emory, will be a significant event for those interested in neuroscience and genetics. Stephen T. Warren, 1953-2021 Warren, the founding chair of Emory’s Department of Human Genetics, led an international team that discovered Read more

Mutations in V-ATPase proton pump implicated in epilepsy syndrome

Why and how disrupting V-ATPase function leads to epilepsy, researchers are just starting to figure Read more

Tracing the start of COVID-19 in GA

At a time when COVID-19 appears to be receding in much of Georgia, it’s worth revisiting the start of the pandemic in early 2020. Emory virologist Anne Piantadosi and colleagues have a paper in Viral Evolution on the earliest SARS-CoV-2 genetic sequences detected in Georgia. Analyzing relationships between those virus sequences and samples from other states and countries can give us an idea about where the first COVID-19 infections in Georgia came from. We can draw Read more

Yerkes National Primate Research Center

Two heavy hitters in this week’s Nature

Two feature articles in Nature this week on work by Emory scientists.

One is from Virginia Hughes (Phenomena/SFARI/MATTER), delving into Kerry Ressler’s and Brian Dias’ surprising discovery in mice that sensitivity to a smell can be inherited, apparently epigenetically. Coincidentally, Ressler will be giving next week’s Dean’s Distinguished Faculty lecture (March 12, 5:30 pm at the School of Medicine).

Another is from Seattle global health writer Tom Paulson, on immunologist Bali Pulendran and using systems biology to unlock new insights into vaccine design.

Posted on by Quinn Eastman in Immunology, Neuro Leave a comment

Talkin’ about epigenetics

This intriguing research has received plenty of attention,  both when it was presented at the Society of Neuroscience meeting in the fall and then when the results were published in Nature Neuroscience.

The short summary is: researchers at Yerkes National Primate Research Center found that when a mouse learns to become afraid of a certain odor, his or her pups will be more Gafas Ray Ban Baratas sensitive to that odor, even though the pups have never encountered it. Both the parent mouse and pups have more space in the smell-processing part of their brains, called the olfactory bulb, devoted to the odor to which they are sensitive.

[Note: a feature on a similar phenomenon, transgenerational inheritance of the effects of chemical exposure, appeared in Science this week]

Somehow information about the parent’s experiences is being inherited. But how? Brian Dias and Kerry Ressler are now pursuing followup experiments to firmly establish what’s going on. They discuss their research in this video:

 

Posted on by Quinn Eastman in Neuro Leave a comment

Default daydreaming linked to Alzheimer’s amyloid

Cut the daydreaming, and you can lessen the neurodegenerative burden on your brain? Surprising new research suggests that how we use our brains may influence which parts of the brain are most vulnerable to amyloid-beta (Aβ), which forms plaques in the brain in Alzheimer’s disease.

Lary Walker, PhD, has been investigating why amyloid accumulation seems to lead to Alzheimer's in humans but not non-human primates

In the June issue of Nature Neuroscience, Yerkes National Primate Research Center scientist Lary Walker and Mathias Jucker from the Hertie Institute for Clinical Brain Research in Tübingen, Germany summarize intriguing recent research on regional brain activity and Aβ accumulation.

Neuroscientists have described a set of interconnected brain regions called the “default mode network,” which appear to be activated during activities such as introspection, memory retrieval, daydreaming and imagination. When a person engages in an externally directed task, such as reading, playing a musical instrument, or solving puzzles, activity in the default network decreases.

The Nature Neuroscience paper, from David Holtzman and colleagues at Washington University St. Louis, suggests prolonged metabolic activation of the default-mode network in mice can render that system vulnerable to Aβ by accelerating Aβ deposition and plaque growth.

This line of research turns the “use it or lose it” idea upside-down. Use the default network too much, and the effect may be harmful. Walker and Jucker suggest why education, for example, appears to head off Alzheimer’s in epidemiological studies: by getting the brain involved in non-default/externally directed mode activity.

This idea has additional consequences that can be tested in the clinic. For example, by increasing metabolism in default-mode regions of the brain, prolonged wakefulness caused by sleep disorders might increase Aβ burden.

Walker and Jucker conclude: “Meanwhile, perhaps the best strategy for lessening soluble Aβ in the default mode network may be simply to work diligently, play hard and sleep well.”

 

Posted on by Quinn Eastman in Neuro 2 Comments

Brain enhancement: can and should we do it?

The Emory Center for Ethics and Emory’s Neuroscience Graduate Program recently co-hosted a symposium discussing the ethics of brain-enhancing technologies, both electronic and pharmacological.

Georgia Tech biomedical engineer Steve Potter explained his work harnessing the behavior of neurons grown on a grid of electrodes. The neurons, isolated from rats, produce bursts of electrical signals in various patterns, which can be “tuned” by the inputs they receive.

“The cells want to form circuits and wire themselves up,” he said.

As for future opportunities, he cited the technique of deep brain stimulation as well as clinical trials in progress, including one testing technology developed by the company Neuropace that monitors the brain’s electrical activity for the purpose of suppressing epileptic seizures. Similar technology is being developed to help control prosthetic limbs and could also promote recovery from brain injury or stroke, he said. Eventually, electrical stimulation that is not modulated according to feedback from the brain will be seen as an overly blunt instrument, even “barbaric,” he said.

Mike Kuhar, a neuroscientist at Yerkes National Primate Research Center, introduced the topic of cognitive enhancers or “smart drugs.” He described one particular class of proposed cognitive enhancers, called ampakines, which appear to improve functioning on certain tasks without stimulating signals throughout the brain. Kuhar questioned whether “smart drugs” pose unique challenges, compared to other types of drugs. From a pharmacology perspective, he said there is less distinction between therapy and enhancement, compared to a perspective imposed by regulators or insurance companies. He described three basic concerns: safety (avoiding toxicity or unacceptable side effects), freedom (lack of coercion from governments or employers) and fairness.

“Every drug has side effects,” he said. “There has to be a balance between the benefits versus the risks, and regulation plays an important role in that.”

He identified antidepressants and treatments for attention deficit-hyperactivity disorder or the symptoms of Alzheimer’s disease as already raising similar issues. The FDA has designated mild cognitive impairment associated with aging as an open area for pharmaceutical development, he noted.

James Hughes, a sociologist from Trinity College and executive director of the Institute for Ethics and Emerging Technologies, welcomed new technologies that he said could not only treat disease, but also enhance human capabilities and address social challenges such as criminal rehabilitation. However, he did identify potential “Ulysses problems”, where users of new technologies would need to exercise control and judgment.

In contrast, historian and Judaic scholar Hava Tirosh-Samuelson, from Arizona State University, decried an “overly mechanistic and not culturally-based understanding of what it means to be human.” She described transhumanism as a utopian extension of 19th century utilitarianism as expounded by thinkers such as Jeremy Bentham.

“Is the brain simply a computational machine?” she asked.

The use of military metaphors – such as “the war on cancer” – in the context of mental illness creates the false impression that everything is correctable or even perfectable, she said.

Emory neuroscience program director Yoland Smith said he wants ethics to become a strong component of Emory’s neuroscience program, with similar discussions and debates to come in future years.

Posted on by Quinn Eastman in Neuro Leave a comment

The Scientist ranks Emory one of top 15 best places to work for postdocs

This year, the readers of The Scientist magazine have ranked Emory University as the 11th best place to work for postdocs in the United States. Among Emorys strengths, respondents cited training and mentoring, and career development opportunities.

The top U.S. institution was the Whitehead Institute for Biomedical Research in Cambridge, Massachusetts. The top international institution was University College, London. Emory has previously ranked as high as number 4 (in 2006) in The Scientists best places to work for postdocs survey.

The ranking was based on responses from 2,881 nontenured life scientists working in academia, industry or noncommercial research institutions. 76 institutions in the United States and 17 international institutions were included.

Emory employs nearly 700 postdoctoral fellows in laboratories in the School of Medicine, Yerkes National Primate Research Center, Emory College, the Graduate School of Arts and Sciences, Rollins School of Public Health and Nell Hodgson Woodruff School of Nursing. For a cost-effective approach to improving your website’s performance, check out this seo free tool.

After receiving their PhD degrees, life sciences graduates launch their research careers by working for several years as postdoctoral fellows in the laboratories of established scientists. In addition to engaging in sometimes grueling laboratory research, many postdocs teach, mentor graduate and undergraduate students and apply for their own funding on a limited basis. Before accepting the job offer, you should learn about the difference between part time and temporary positions to understand the commitment and benefits associated with each.

Posted on by Quinn Eastman in Uncategorized Leave a comment

New Biological Pathway Identified for PTSD

Emory MedicalHorizon

High blood levels of a hormone produced in response to stress are linked to post-traumatic stress disorder in women but not men, a study from researchers at Emory University and the University of Vermont has found.

The results were published in the Feb. 24 issue of Nature.

The hormone, called PACAP (pituitary adenylate cyclase-activating polypeptide), is known to act throughout the body and the brain, modulating central nervous system activity, metabolism, blood pressure, pain sensitivity and immune function. The identification of PACAP as an indicator of PTSD may lead to new diagnostic tools and eventually, to new treatments for anxiety disorders.


Video on YouTube

“Few biological markers have been available for PTSD or for psychiatric diseases in general,” says first author Kerry Ressler, MD, PhD, associate professor of psychiatry and behavioral sciences at Emory University School of Medicine and a researcher at Yerkes National Primate Research Center. “These results give us a new window into the biology of PTSD.”

Read more @ emoryhealthsciences.org.

Posted on by Wendy Darling in Neuro Leave a comment

One reason why SIV-infected sooty mangabeys can avoid AIDS

Sooty mangabeys are a variety of Old World monkey that can be infected by HIV’s cousin SIV, but do not get AIDS. Emory immunologist and Georgia Research Alliance Eminent Scholar Guido Silvestri, MD, has been a strong advocate for examining non-human primates such as the sooty mangabey, which manage to handle SIV infection without crippling their immune systems. Silvestri is division chief of microbiology and immunology at Yerkes National Primate Research Center.

Research shows sooty mangabeys have T cells that can do the same job as those targeted by SIV, even if they don't have the same molecules on their surfaces

A recent paper in the Journal of Clinical Investigation reveals that sooty mangabeys have T cells that perform the same functions as those targeted by SIV and HIV, but have different clothing.

Silvestri and James Else, the animal resources division chief at Yerkes, are co-authors on the paper, while Donald Sodora at Seattle Biomedical Research Institute is senior author.

One main target for SIV and HIV is the group of T cells with the molecule CD4 on their surfaces. These are the “helper” T cells that keep the immune system humming. Doctors treating people with HIV infections tend to keep an eye on their CD4 T cell counts.

In the paper, the scientists show that sooty mangabeys infected with SIV lose their CD4 T cells, without losing the ability to regulate their immune systems. What’s remarkable here is that sooty mangabeys appear to have “double negative” or DN T cells that can perform the same functions as those lost to SIV infection, even though they don’t have CD4.

CD4 isn’t just decoration for T cells. It’s a part of how they recognize bits of host or pathogen protein in the context of MHC class II (the molecule that “presents” the bits on the outside of target cells). Somehow, the T cells in sooty mangabeys have a way to get around this requirement and still regulate the immune system competently. How they do this is the topic of ongoing research.

The authors write:

It will be important to assess DN T cells in HIV-infected patients, particularly to determine whether these cells are preserved and functional in long-term nonprogressors. These efforts may lead to future immune therapies or vaccine modalities designed to modulate DN T cell function. Indeed, the main lesson we have learned to date from this cohort of SIV-infected CD4-low mangabeys may be that managing immune activation and bolstering the function of nontarget T cells through better vaccines and therapeutics has the potential to contribute to preserved immune function and a nonprogressive outcome in HIV infection even when CD4+ T cell levels become low.

Posted on by Quinn Eastman in Immunology Leave a comment

Brain chemical linked to migraines could be anxiety target

Neuroscientist Michael Davis, PhD, and his colleagues have devoted years to mapping out the parts of the brain responsible for driving fear and anxiety. In a recent review article, they describe the differences between fear and anxiety in this way:

Fear is a generally adaptive state of apprehension that begins rapidly and dissipates quickly once the threat is removed (phasic fear). Anxiety is elicited by less specific and less predictable threats, or by those that are physically or psychologically more distant (sustained fear).

Michael Davis is an investigator at Yerkes National Primate Research Center and Emory School of Medicine

A host of their studies suggest that one part of the brain, the amygdala, is instrumental in producing phasic fear, while the bed nucleus of the stria terminalis (BNST) is important for sustained fear.

In a new report in the Journal of Neuroscience, Davis’ team describes the effects of a brain communication chemical, which is known primarily for its role in driving migraine headaches, in enhancing anxiety. Individuals who constantly suffer from anxiety attacks and other mental health issues may need to consult with an anxiety psychiatrist for proper diagnosis and treatments for anxiety. With the regular intake of Organic CBD Nugs under doctor’s prescription can have the anxiety levels under control. However, one should go to services that provide medical marijuana cards in St. Petersburg, FL so that they can get access to medical marijuana. Individuals who are permitted to grow their own cannabis for personal use or business may order nyc diesel autoflowering marijuana seeds online.

“This is the first study to show a role of this peptide, in a brain area we’ve identified as being important for anxiety. This could lead to new drug targets to selectively reduce anxiety,” Davis says.

His team found that introducing calcitonin gene-related peptide (CGRP) into rats’ BNSTs can increase the anxiety they experience from loud noises or light, in that they startle more and avoid well-lit places. This peptide appears to activate other parts of the brain including the amygdala, hypothalamus and brainstem, producing fear-related symptoms.

Slice of rat brain showing the bed nucleus of the stria terminalis (BNST) and the central amygdala (Ce)

If Davis and his colleagues block CGRP’s function by introducing a short, decoy version of CGRP into the BNST, the reverse does not happen: the rats are not more relaxed. However, the short version does block the startle-enhancing effects of a smelly chemical produced by foxes that scientists use to heighten anxiety-like behavior in rats. This suggests that interfering with CGRP can reduce fear-related symptoms in situations where the rats are already under stress.

“”Blockade of CGRP receptors may thus represent a novel therapeutic target for the treatment of stress-induced anxiety and related psychopathologies such as post-traumatic stress disorder,” says the paper’s first author, postdoctoral fellow Kelly Sink.

In fact, experimental drugs that work against CGRP are already in clinical trials to treat migraine headaches. But first, Sink reports that she and her colleagues are examining the relationship between CGRP and the stress hormone CRF (corticotropin-releasing factor) — another target of pharmacological interest — in the parts of the brain important for fear responses.

Posted on by Quinn Eastman in Neuro Leave a comment

National Academy of Sciences recognizes Yerkes Primate Center neuroscientist

Elizabeth A. Buffalo, PhD

The National Academy of Sciences (NAS) has recognized 13 individuals with awards acknowledging extraordinary scientific achievements in the areas of biology, chemistry, physics, economics and psychology.

Elizabeth A. Buffalo, PhD, a researcher at the Yerkes National Primate Research Center, is one of two recipients of the Troland Research Awards. Buffalo is being honored for innovative, multidisciplinary study of the hippocampus and the neural basis of memory. Troland Research Awards of $50,000 are given annually to recognize unusual achievement by young investigators and to further empirical research in experimental psychology.

The recipients will be honored in a ceremony on Sunday, May 1, during the NAS 148th annual meeting.

Posted on by admin in Neuro Leave a comment

Renowned Scientist Recipient of Emory’s First Annual Neuroscience and Ethics Award

Michael Gazzaniga, PhD

Michael Gazzaniga, PhD, will deliver the lecture “Determinism, Consciousness and Free Will.”

Emory University Center for Ethics, Yerkes National Primate Research Center and The Neuroscience Initiative will present the First Annual Neuroscience and Ethics Award Lecture, “Determinism, Consciousness and Free Will” on January 18 at 4 pm at Emory’s Harland Cinema at the Dobbs University Center.

The guest speaker, and first to be recognized with this award, is Michael Gazzaniga, PhD, a scientist and author considered one of the pioneers in the emerging field of cognitive neuroscience.

“Dr. Gazzaniga is a world renowned scientists who, in addition to his other accomplishments, pioneered the study of split-brained patients and so revealed how the different hemispheres of our brains function,” says Paul Root Wolpe, PhD, director of the Emory University Center for Ethics.

“He has won our First Annual Emory Neuroscience and Ethics Award because, throughout his career, he has tried to apply his scientific understandings to improve the human condition, including serving on President Bush’s Bioethics Commission and publications such as his book The Ethical Brain.  I can think of no finer choice to be the first recipient of this Award.”

Gazzaniga founded and presides over the Cognitive Neuroscience Institute and is editor-in-chief emeritus of the Journal of Cognitive Neuroscience, which he also founded.  In addition, he is the one of the co-founders of the Cognitive Neuroscience Society, which was named in the late 1970’s.

In 1997, Gazzaniga was elected to the American Academy of Arts & Sciences.  He is the past-president of the Association for Psychological Science, served on the President’s Council on Bioethics and, in 2005, was elected to the National Academies Institute of Medicine. In 2009, he presented the Gifford Lectures at the University of Edinburgh.

Gazzaniga’s book The Ethical Brain describes in laymen’s language how the brain develops a value system, and the ethical dilemmas facing society as our comprehension of the brain expands.

For more information, contact Jamila Garrett-Bell.

Posted on by Wendy Darling in Uncategorized Leave a comment