Brain organoid model shows molecular signs of Alzheimer’s before birth

In a model of human fetal brain development, Emory researchers can see perturbations of epigenetic markers in cells derived from people with familial early-onset Alzheimer’s disease, which takes decades to appear. This suggests that in people who inherit mutations linked to early-onset Alzheimer’s, it would be possible to detect molecular changes in their brains before birth. The results were published in the journal Cell Reports. “The beauty of using organoids is that they allow us to Read more

The earliest spot for Alzheimer's blues

How the most common genetic risk factor in AD interacts with the earliest site of neurodegeneration Read more

Make ‘em fight: redirecting neutrophils in CF

Why do people with cystic fibrosis (CF) have such trouble with lung infections? The conventional view is that people with CF are at greater risk for lung infections because thick, sticky mucus builds up in their lungs, allowing bacteria to thrive. CF is caused by a mutation that affects the composition of the mucus. Rabindra Tirouvanziam, an immunologist at Emory, says a better question is: what type of cell is supposed to be fighting the Read more

virus-like particles

A distinguished flu vaccine researcher

Congratulations to Richard Compans, PhD, who delivered the Dean’s Distinguished Faculty Lecture on May 12, joining a select group of Emory researchers who have received this award. After Dean Chris Larsen presented the award, Compans also received a Catalyst award from the Georgia Research Alliance, presented by GRA President and CEO Mike Cassidy.compans115a-2

At Emory, Compans has led research on ways to improve influenza vaccination, such as vaccines based on non-infectious virus-like particles and microneedle patches for delivery (now being tested clinically). The 2009 H1N1 flu epidemic, as well as concern about pandemic avian flu, have meant that Compans’ work has received considerable attention in the last several years. In his talk, he also discussed his early work on the structure of influenza virus, the virus’s complex ecology, and the limitations of current flu vaccines.

Compans was recruited to Emory from UAB in 1992 and was chair of Emory’s microbiology and immunology department for more than a decade. He was also instrumental in recruiting Rafi Ahmed to establish and lead the Emory Vaccine Center. He is now co-principal investigator of the Emory-UGA Center of Excellence for Influenza Research and Surveillance.

Some recent papers that illustrate the extent of Compans’ influence: Read more

Posted on by Quinn Eastman in Immunology Leave a comment

Why HIV’s cloak has a long tail

Virologists at Emory, Yerkes and Children’s Healthcare of Atlanta have uncovered a critical detail explaining how HIV assembles its infectious yet stealthy clothing.

Paul Spearman, MD

For HIV to spread from cell to cell, the viral envelope protein needs to become incorporated into viral particles as they emerge from an infected cell. Researchers led by Paul Spearman have found that a small section of the envelope protein, located on its “tail”, is necessary for the protein to be sorted into viral particles.

The results were published June 1 in Proceedings of the National Academy of Sciences. Read more

Posted on by Quinn Eastman in Immunology Leave a comment

Moving flu vaccine research forward

The scientists in the lab of Richard Compans, PhD, professor of microbiology and immunology at Emory, are hard at work, imagining the unimaginable: A time when patients can self-administer flu vaccines. A time when vaccination does not require exposure to inactive viruses. A time when a universal vaccine could protect from all varieties of influenza: swine, avian, seasonal and strains still emerging.

Richard Compans, PhD (right), with colleague Mark Prausnitz, PhD, from Georgia Tech

But it’s not just hope that motivates them as they work. Emory’s scientists are fighting the clock against another possible future: a time of pandemic and uncontrollable virus mutation. The recent emergence of H1N1 and H5N1, known colloquially as swine flu and avian flu, have added an even greater sense of urgency to their task.

“The H5N1—the virus derived from avian species—has a 60 percent mortality,” says Emory microbiologist Sang-Moo Kang, PhD. Yet that strain of influenza hasn’t resulted in many human deaths, because, so far, avian flu spreads only to humans who are in contact with infected birds.

Read more

Posted on by admin in Immunology Leave a comment