Two items relevant to long COVID

One of the tricky issues in studying in long COVID is: how widely do researchers cast their net? Initial reports acknowledged that people who were hospitalized and in intensive care may take a while to get back on their feet. But the number of people who had SARS-CoV-2 infections and were NOT hospitalized, yet experienced lingering symptoms, may be greater. A recent report from the United Kingdom, published in PLOS Medicine, studied more than Read more

All your environmental chemicals belong in the exposome

Emory team wanted to develop a standard low-volume approach that would avoid multiple processing steps, which can lead to loss of material, variable recovery, and the potential for Read more

Signature of success for an HIV vaccine?

Efforts to produce a vaccine against HIV/AIDS have been sustained for more than a decade by a single, modest success: the RV144 clinical trial in Thailand, whose results were reported in 2009. Now Emory, Harvard and Case Western Reserve scientists have identified a gene activity signature that may explain why the vaccine regimen in the RV144 study was protective in some individuals, while other HIV vaccine studies were not successful. The researchers think that this signature, Read more

Taq

Creating tools for next-generation sequencing

Emory biochemist Eric Ortlund participated in a study that was recently published in Proceedings of the National Academy of Sciences, which involves tinkering with billions of years of evolution by introducing mutations into DNA polymerase.

What may soon be old-fashioned: next-generation sequencing combines many reactions like the one depicted above into one pot

DNA polymerases, enzymes that replicate and repair DNA, assemble individual letters in the genetic code on a template. The PNAS paper describes efforts to modify Taq DNA polymerase to get it to accept “reversible terminators.” (Taq = Thermus aquaticus, a variety of bacteria that lives in hot springs and thus has heat-resistant enzymes, a useful property for DNA sequencing)

Ortlund was involved because he specializes in looking at how evolution shapes protein structure. Along with co-author Eric Gaucher, Ortlund is part of the Fundamental and Applied Molecular Evolution Center at Emory and the Georgia Institute of Technology.

To sequence DNA faster and more cheaply, scientists are trying to get DNA polymerases to accept new building blocks. This could facilitate next-generation sequencing technology that uses “reversible terminators” to sequence many DNA templates in parallel.

Read more

Posted on by Quinn Eastman in Uncategorized Leave a comment