Fly model of repetitive head trauma speeds up time

Behnke and Zheng describe their model as a platform for future studies on repetitive head injury, in which they can unleash all of the genetic tools fruit flies have to Read more

Brain organoid model shows molecular signs of Alzheimer’s before birth

In a model of human fetal brain development, Emory researchers can see perturbations of epigenetic markers in cells derived from people with familial early-onset Alzheimer’s disease, which takes decades to appear. This suggests that in people who inherit mutations linked to early-onset Alzheimer’s, it would be possible to detect molecular changes in their brains before birth. The results were published in the journal Cell Reports. “The beauty of using organoids is that they allow us to Read more

The earliest spot for Alzheimer's blues

How the most common genetic risk factor in AD interacts with the earliest site of neurodegeneration Read more

silica nanoparticles

Bone-strengthening particles stimulate autophagy

Neale Weitzmann and George Beck have been publishing a series of papers describing how silica nanoparticles can increase bone mineral density in animals. Their findings could someday form the basis for a treatment for osteoporosis.

In 2012, we posted an article and video on this topic. We wanted to call attention to a few of the team’s recent papers, one of which probes the mechanism for a remarkable phenomenon: how can very fine silica particles stimulate bone formation?

The particles’ properties seem to depend on their size: 50 nanometers wide – smaller than a HIV or influenza vision. In a 2014 ACS Nano paper, Beck, Weitzmann and postdoc Shin-Woo Ha show that the particles interact with particular proteins involved in the process of autophagy, a process of “self digestion” induced by stress.

“These studies suggest that it is not the material per se that stimulates autophagy but rather size or shape,” they write. Read more

Posted on by Quinn Eastman in Uncategorized Leave a comment