Warren symposium follows legacy of geneticist giant

If we want to understand how the brain creates memories, and how genetic disorders distort the brain’s machinery, then the fragile X gene is an ideal place to start. That’s why the Stephen T. Warren Memorial Symposium, taking place November 28-29 at Emory, will be a significant event for those interested in neuroscience and genetics. Stephen T. Warren, 1953-2021 Warren, the founding chair of Emory’s Department of Human Genetics, led an international team that discovered Read more

Mutations in V-ATPase proton pump implicated in epilepsy syndrome

Why and how disrupting V-ATPase function leads to epilepsy, researchers are just starting to figure Read more

Tracing the start of COVID-19 in GA

At a time when COVID-19 appears to be receding in much of Georgia, it’s worth revisiting the start of the pandemic in early 2020. Emory virologist Anne Piantadosi and colleagues have a paper in Viral Evolution on the earliest SARS-CoV-2 genetic sequences detected in Georgia. Analyzing relationships between those virus sequences and samples from other states and countries can give us an idea about where the first COVID-19 infections in Georgia came from. We can draw Read more

sequencing

Trend: epigenomics

Nature News recently described a trend noticeable at Emory and elsewhere. That trend is epigenomics: studying the patterns of chemical groups that adorn DNA sequences and influence their activity. Often this means taking a comprehensive genome-wide look at the patterns of DNA methylation.

DNA methylation is a chemical modification analogous to punctuation or a highlighter or censor’s pen. It doesn’t change the letters of the DNA but it does change how that information is received.

One recent example of epigenomics from Emory is a collaboration between psychiatrist Andrew Miller and oncologist Mylin Torres, examining the long-lasting marks left by chemotherapy in the blood cells of breast cancer patients.

Their co-author Alicia Smith, who specializes in the intersection of psychiatry and genetics, reports “EWAS or epigenome-wise association studies are being used in complex disease research to suggest genes that may be involved in etiology or symptoms.  They’re used in medication or diet studies to demonstrate efficacy or suggest side effects.   They’re also used in longitudinal studies to see if particular exposures or characteristics (i.e. low birthweight) have long-term consequences.” Read more

Posted on by Quinn Eastman in Uncategorized Leave a comment