Two items relevant to long COVID

One of the tricky issues in studying in long COVID is: how widely do researchers cast their net? Initial reports acknowledged that people who were hospitalized and in intensive care may take a while to get back on their feet. But the number of people who had SARS-CoV-2 infections and were NOT hospitalized, yet experienced lingering symptoms, may be greater. A recent report from the United Kingdom, published in PLOS Medicine, studied more than Read more

All your environmental chemicals belong in the exposome

Emory team wanted to develop a standard low-volume approach that would avoid multiple processing steps, which can lead to loss of material, variable recovery, and the potential for Read more

Signature of success for an HIV vaccine?

Efforts to produce a vaccine against HIV/AIDS have been sustained for more than a decade by a single, modest success: the RV144 clinical trial in Thailand, whose results were reported in 2009. Now Emory, Harvard and Case Western Reserve scientists have identified a gene activity signature that may explain why the vaccine regimen in the RV144 study was protective in some individuals, while other HIV vaccine studies were not successful. The researchers think that this signature, Read more

retina

Circadian rhythms go both ways: in and from retina

In case you missed it, the 2017 Nobel Prize in Medicine marked the arrival of the flourishing circadian rhythm field. Emory Eye Center’s Mike Iuvone teamed up with Gianluca Tosini at Morehouse School of Medicine to probe how a genetic disruption of circadian rhythms affects the retina in mice.

Removal of the Bmal1 gene – an essential part of the body’s internal clock — from the retina in mice was known to disrupt the electrical response to light in the eye. The “master clock” in the body is set by the suprachiasmatic nucleus, part of the hypothalamus, which receives signals from the retina. Peripheral tissues, such as the liver and muscles, have their own clocks. The retina is not so peripheral to circadian rhythm, but its cellular clocks are important too.

What the new paper in PNAS shows is that removal of Bmal1 from the retina accelerates the deterioration of vision that comes with aging, but it also shows developmental effects – see below.

You might think: “OK, the mice have disrupted circadian rhythms for their whole lives, so that’s why their retinas are messed up.” But the Emory/Morehouse experimenters removed the Bmal1 gene from the retina only.

P. Michael Iuvone, PhD, director of vision research at Emory Eye Center

The authors write: “BMAL1 appears to play important roles in both cone development and cone viability during aging… Cones are known to be among the cells with highest metabolism within the body and therefore, alteration of metabolic processes within these cells is likely to affect their health status and viability.”

More from the official news release:

…Bmal1 removal significantly affects visual information processing and reduces the thickness of inner retinal layers. The absence of Bmal1 also affected visual acuity and contrast sensitivity. Another important finding was a significant age-related decrease in the number of cone photoreceptors (outer segments and nuclei) in mice lacking Bmal1, which suggests that these cells are directly affected by Bmal1 removal.

“When we genetically disrupted the circadian clocks in the retinas of mice, we found accelerated age-related cone photoreceptor death, similar to that in age-related macular degeneration in humans,” Iuvone says. “This loss of photoreceptor cones affects retinal responses to bright light.

“We also noted developmental effects in young mice,” Iuvone continues, “including abnormalities in rod bipolar cells that affected dim light responses. These findings have potential implications for pregnant shift workers and other women with sleep and circadian disorders, whose offspring might develop visual problems due to their mother’s circadian disruption.”

 

 

Posted on by Quinn Eastman in Neuro Leave a comment

Eyes on dopamine

Dopamine-restoring drugs already used to treat Parkinson’s disease may also be beneficial for the treatment of diabetic retinopathy, a leading cause of blindness in adults, researchers have discovered. The results were published recently in Journal of Neuroscience.

Diabetic retinopathy affects more than a quarter of adults with diabetes and threatens the vision of more than 600,000 people in the United States. Doctors had previously thought most of the impairment of vision in diabetic retinopathy came from damage to the blood vessels induced by high blood sugar, but had known that dopamine, a vital neurotransmitter in the brain, was also important in the retina.

“There was some evidence already that dopamine levels were reduced in diabetic retinopathy, but what’s new here is: we can restore dopamine levels and improve visual Ray Ban outlet function in an animal model of diabetes,” says Machelle Pardue, PhD, associate professor of ophthalmology at Emory University School of Medicine and research career scientist at the Atlanta VA Medical Center. Read more

Posted on by Quinn Eastman in Neuro 1 Comment