Brain organoid model shows molecular signs of Alzheimer’s before birth

In a model of human fetal brain development, Emory researchers can see perturbations of epigenetic markers in cells derived from people with familial early-onset Alzheimer’s disease, which takes decades to appear. This suggests that in people who inherit mutations linked to early-onset Alzheimer’s, it would be possible to detect molecular changes in their brains before birth. The results were published in the journal Cell Reports. “The beauty of using organoids is that they allow us to Read more

The earliest spot for Alzheimer's blues

How the most common genetic risk factor in AD interacts with the earliest site of neurodegeneration Read more

Make ‘em fight: redirecting neutrophils in CF

Why do people with cystic fibrosis (CF) have such trouble with lung infections? The conventional view is that people with CF are at greater risk for lung infections because thick, sticky mucus builds up in their lungs, allowing bacteria to thrive. CF is caused by a mutation that affects the composition of the mucus. Rabindra Tirouvanziam, an immunologist at Emory, says a better question is: what type of cell is supposed to be fighting the Read more

remdesivir

Repurposing a rheumatoid arthritis drug for COVID-19

For COVID-19, many researchers around the world have tried to repurpose drugs for other indications, often unsuccessfully. New clinical trial results show that baricitinib, developed by Eli Lilly and approved for rheumatoid arthritis, can speed recovery and may reduce mortality in some groups of hospitalized COVID-19 patients.

How did this study, sponsored by the National Institute of Allergy and Infectious Diseases, come together? In part, through decade-long groundwork laid by investigators at Emory, and their collaborations with others.

The ACTT-2 results were recently published in New England Journal of Medicine. (More formal NIAID and Emory press releases are here and here.)

For several years, drug hunter and virologist Raymond Schinazi and his team had been investigating a class of medications called JAK inhibitors, as an option for tamping down chronic inflammation in HIV infection. Schinazi was one of the first at Emory to investigate the use of anti-inflammatory agents for herpesviruses and HIV in combination with antiviral drugs. He believed that these viruses “hit and run,” leaving behind inflammation, even if they later go into hiding and seem to disappear.

In Schinazi’s lab, Christina Gavegnano had shown that JAK inhibitors had both anti-inflammatory and antiviral properties in the context of HIV — a project she started as a graduate student in 2010. JAK refers to Janus kinases, which regulate inflammatory signals in immune cells.

 “Our team was working on this for 10 years for HIV,” Gavegnano says. “There was a huge amount of data that we garnered, showing how this drug class works on chronic inflammation and why.” 

Read more

Posted on by Quinn Eastman in Immunology Leave a comment

Super-cold technique = hot way to see enzyme structure

In the last decade, a revolution has been taking place in structural biology, the field in which scientists produce detailed maps of how enzymes and other machines in the cell work. That revolution is being driven by cryo-electron microscopy (cryo-EM for short), which is superseding X-ray crystallography as the main data-production technique and earned a chemistry Nobel in 2017.

Just before COVID-19 sent some Emory researchers home and drove others to pivot their work toward coronavirus, Lab Land had a chance to tour the cryo-EM facility and take photos, with the help of Puneet Juneja, director of the core. Juneja demonstrated how samples are prepared for data collection — see the series of photos below.

Someone coming into the facility in the Biochemistry Connector area will notice a sign telling visitors and those passing by to stay quiet (forgot to take a photo of that!). The facility has electrical shielding and temperature/humidity controls. Also two levels of cooling are required for samples, since they are flash-frozen or “vitrified” in liquid ethane, which is in turn cooled by liquid nitrogen. The cooling needs to happen quickly so that ice crystals do not form. The massive cryo-EM equipment rests on a vibration-reduction platform; no music and no loud conversation are allowed during data collection.

One of the first structures obtained in this relatively new facility was the structure of a viral RNA polymerase, the engine behind viral replication. It wasn’t a coronavirus enzyme – it was from RSV (respiratory syncytial virus).

Still, cryo-EM is a way to visualize exactly how drugs that inhibit the SARS-CoV-2 polymerase – such as remdesivir or Emory’s own EIDD-2801 – exert their effects. Chinese researchers recently published a cryo-EM structure of the SARS-CoV-2 polymerase with remdesivir in Science. Read more

Posted on by Quinn Eastman in Immunology, Uncategorized Leave a comment