Insights into Parkinson's balance problems

In PD, disorganized sensorimotor signals cause muscles in the limbs to contract, such that both a muscle promoting a motion and its antagonist muscle are Read more

Cajoling brain cells to dance

“Flicker” treatment is a striking non-pharmaceutical approach aimed at slowing or reversing Alzheimer’s disease. It represents a reversal of EEG: not only recording brain waves, but reaching into the brain and cajoling cells to dance. One neuroscientist commentator called the process "almost too fantastic to believe." With flashing lights and buzzing sounds, researchers think they can get immune cells in the brain to gobble up more amyloid plaques, the characteristic clumps of protein seen in Read more

rehabilitation

Insights into Parkinson’s balance problems

Loss of balance and falls are big concerns for people living with Parkinson’s disease and their caregivers. Researchers at Emory and Georgia Tech recently published a paper in PLOS ONE providing insights into how sensory and motor information are misrouted when people with Parkinson’s are attempting to adjust their balance.

When the researchers examined 44 people with Parkinson’s, their history of recent falls correlated with the presence and severity of abnormal muscle reactions. This could help clinicians predict whether someone is at high risk of falling and possibly monitor responses to therapeutic interventions.

People with Parkinson’s tend to lose their balance in situations when they are actively trying to control their center of mass, like when they are getting up from a chair or turning around. Disorganized sensorimotor signals cause muscles in the limbs to contract, such that both a muscle promoting a motion and its antagonist muscle are recruited. It’s like stepping on the gas and the brake at the same time, says J. Lucas McKay, who is first author of the paper.

Physical therapists are sometimes taught that balance reactions in Parkinson’s patients are slower than they should be.

“We show this is not true,” McKay says. “The reactions are on-time but disorganized.”

The paper extends groundbreaking work on how muscles maintain balance, conducted by co-author Lena Ting in animals and healthy young humans, to people with Parkinson’s. Co-authors of the PLOS One paper include Ting and Parkinson’s specialists Madeleine Hackney and Stewart Factor, director of Emory’s movement disorders program. McKay is assistant professor of neurology and biomedical informatics.

McKay says that sensorimotor problems may be a result of degeneration of regions of the brain, outside of and after the dopaminergic cells in the basal ganglia.

“We have to speculate, but the sensory misrouting would be occurring in brain regions like the thalamus — not usually the ones we think about in Parkinson’s, such as the basal ganglia,” he says. “This suggests that future therapies involving these areas could reduce falls.”

The set-up that researchers used to measure balance reactions resembles an earthquake simulator, and was designed and customized by Ting. The photo shows one of the Parkinson’s study participants, being watched by a physical therapy student.

The apparatus can produce around 1 g of acceleration inside of 12 inches of travel, which is “definitely enough to knock someone over,” McKay says.

Read more

Posted on by Quinn Eastman in Neuro Leave a comment

Enhanced verbal abilities in the congenitally blind

A recent paper in Experimental Brain Research from Emory neuroscientist Krish Sathian and colleagues demonstrates that congenitally blind study participants displayed superior verbal, but not spatial abilities, when compared to their sighted counterparts. This may reflect both greater reliance on verbal information, and the recruitment of the visual cortex for verbal tasks.

Sathian’s team has also been investigating, through brain imaging studies, whether the visual cortex is involved in the processing of metaphors (2016 SFN abstract) in the congenitally blind. They previously showed that blind study participants were better at identifying rotated objects by touch. Read more

Posted on by Quinn Eastman in Neuro Leave a comment