Two items relevant to long COVID

One of the tricky issues in studying in long COVID is: how widely do researchers cast their net? Initial reports acknowledged that people who were hospitalized and in intensive care may take a while to get back on their feet. But the number of people who had SARS-CoV-2 infections and were NOT hospitalized, yet experienced lingering symptoms, may be greater. A recent report from the United Kingdom, published in PLOS Medicine, studied more than Read more

All your environmental chemicals belong in the exposome

Emory team wanted to develop a standard low-volume approach that would avoid multiple processing steps, which can lead to loss of material, variable recovery, and the potential for Read more

Signature of success for an HIV vaccine?

Efforts to produce a vaccine against HIV/AIDS have been sustained for more than a decade by a single, modest success: the RV144 clinical trial in Thailand, whose results were reported in 2009. Now Emory, Harvard and Case Western Reserve scientists have identified a gene activity signature that may explain why the vaccine regimen in the RV144 study was protective in some individuals, while other HIV vaccine studies were not successful. The researchers think that this signature, Read more

primate research

Untangling the mysteries of Alzheimer’s disease

Lary Walker, PhD

Consider this: Alzheimer’s is a uniquely human disorder. But why? Why don’t nonhuman primates, such as monkeys, get Alzheimer’s disease. Monkeys form the senile plaques that are identical to the plaques found in humans. So do other animals.

“Yet, despite the fact that nonhuman primates make this protein that we know is very important in the pathogenesis of Alzheimer’s disease, they don’t develop the full disease,” says Lary Walker, PhD. Walker is an associate professor at Yerkes National Primate Research Center.

“They don’t develop the tangles we associate with Alzheimer’s disease, the neuronal loss, the shrinkage of the brain, and they don’t get demented in the sense that humans do,” says Walker.

When our bodies make a protein, the protein tends to fold into a functional form. But when it comes to Alzheimer’s disease, some proteins misfold, becoming sticky and then combining with one another. In their collective form, the proteins can then form plaques or tangles, the two types of lesions associated with Alzheimer’s disease.

And for some unknown reason, people who have plaques usually go on to form tangles. But people who have tangles don’t always go on to form plaques. No one is sure why. But that’s what researcher Walker wants to find out.

To listen to Walker’s own words about Alzheimer’s disease, access Emory’s new Sound Science podcast.

Posted on by admin in Neuro Leave a comment