Warren symposium follows legacy of geneticist giant

If we want to understand how the brain creates memories, and how genetic disorders distort the brain’s machinery, then the fragile X gene is an ideal place to start. That’s why the Stephen T. Warren Memorial Symposium, taking place November 28-29 at Emory, will be a significant event for those interested in neuroscience and genetics. Stephen T. Warren, 1953-2021 Warren, the founding chair of Emory’s Department of Human Genetics, led an international team that discovered Read more

Mutations in V-ATPase proton pump implicated in epilepsy syndrome

Why and how disrupting V-ATPase function leads to epilepsy, researchers are just starting to figure Read more

Tracing the start of COVID-19 in GA

At a time when COVID-19 appears to be receding in much of Georgia, it’s worth revisiting the start of the pandemic in early 2020. Emory virologist Anne Piantadosi and colleagues have a paper in Viral Evolution on the earliest SARS-CoV-2 genetic sequences detected in Georgia. Analyzing relationships between those virus sequences and samples from other states and countries can give us an idea about where the first COVID-19 infections in Georgia came from. We can draw Read more

prepulse inhibition

Mouse version of 3q29 deletion: insights into schizophrenia/ASD pathways

Scientists at Emory University School of Medicine have created a mouse model of human 3q29 deletion syndrome, which is expected to provide insights into the genetic underpinnings of both schizophrenia and autism spectrum disorder.

In 3q29 deletion syndrome, a stretch of DNA containing several genes is missing from one of a child’s chromosomes. The deletion usually occurs spontaneously rather than being inherited. Affected individuals have a higher risk of developing intellectual disability, schizophrenia, and autism spectrum disorder. 3q29 deletion is one of the strongest genetic risk factors for schizophrenia, and the Emory researchers see investigating it as a way of unraveling schizophrenia’s biological and genetic complexity.

The results were published in Molecular Psychiatry.

“We see these mice as useful tools for understanding the parts of the brain whose development is perturbed by 3q29 deletion, and how it affects males and females differently,” says Jennifer Mulle, PhD, assistant professor of human genetics. “They are also a starting point for dissecting individual genes within the 3q29 deletion.”

Working with clinicians and psychologists at Marcus Autism Center, Mulle is leading an ongoing study of 3q29 deletion’s effects in humans, and observations from the mice are expected to inform these efforts. (More about Mulle here.) Read more

Posted on by Quinn Eastman in Neuro Leave a comment