Brain organoid model shows molecular signs of Alzheimer’s before birth

In a model of human fetal brain development, Emory researchers can see perturbations of epigenetic markers in cells derived from people with familial early-onset Alzheimer’s disease, which takes decades to appear. This suggests that in people who inherit mutations linked to early-onset Alzheimer’s, it would be possible to detect molecular changes in their brains before birth. The results were published in the journal Cell Reports. “The beauty of using organoids is that they allow us to Read more

The earliest spot for Alzheimer's blues

How the most common genetic risk factor in AD interacts with the earliest site of neurodegeneration Read more

Make ‘em fight: redirecting neutrophils in CF

Why do people with cystic fibrosis (CF) have such trouble with lung infections? The conventional view is that people with CF are at greater risk for lung infections because thick, sticky mucus builds up in their lungs, allowing bacteria to thrive. CF is caused by a mutation that affects the composition of the mucus. Rabindra Tirouvanziam, an immunologist at Emory, says a better question is: what type of cell is supposed to be fighting the Read more

osteoporosis

Immune studies suggest remedies for parathyroid hormone-driven bone loss

A common cause of bone loss is an overactive parathyroid gland, which doctors usually treat with surgery. New research on how excess parathyroid hormone affects immune cells suggests that doctors could repurpose existing drugs to treat hyperparathyroidism without surgery.

The results were published October 8 in Cell Metabolism. [My apologies for not posting this in October.]

“Surgery is sometimes not an appropriate remedy for hyperparathyroidism because of the condition of the patient, and it is also expensive,” says lead author Roberto Pacifici, MD. “Also, the one pharmacological treatment that is available, cinacalcet, is not always the ideal solution. This work could potentially lead to alternatives.”

Roberto Pacifici, MD

Researchers at Emory University School of Medicine led by Pacifici teamed up with doctors from the University of Turin in Italy, combining observations of human patients with an overactive parathyroid with experiments on mice.

The drugs identified as potential treatments are: calcium channel blockers, now used to treat high blood pressure, and antibodies that block the inflammatory molecule IL-17A, under development for the skin disease psoriasis. Clinical trials would be necessary to show that these drugs are effective against parathyroid hormone-induced bone loss in humans. Read more

Posted on by Quinn Eastman in Immunology Leave a comment

Bone-strengthening particles stimulate autophagy

Neale Weitzmann and George Beck have been publishing a series of papers describing how silica nanoparticles can increase bone mineral density in animals. Their findings could someday form the basis for a treatment for osteoporosis.

In 2012, we posted an article and video on this topic. We wanted to call attention to a few of the team’s recent papers, one of which probes the mechanism for a remarkable phenomenon: how can very fine silica particles stimulate bone formation?

The particles’ properties seem to depend on their size: 50 nanometers wide – smaller than a HIV or influenza vision. In a 2014 ACS Nano paper, Beck, Weitzmann and postdoc Shin-Woo Ha show that the particles interact with particular proteins involved in the process of autophagy, a process of “self digestion” induced by stress.

“These studies suggest that it is not the material per se that stimulates autophagy but rather size or shape,” they write. Read more

Posted on by Quinn Eastman in Uncategorized Leave a comment

PTH for stroke: stem cells lite

I’d like to highlight a paper in PLOS One from anesthesiologists Shan Ping Yu and Ling Wei’s group that was published earlier this year. [Sorry for missing it then!] They are investigating potential therapies for stroke, long a frustrating area of clinical research. The “clot-busting” drug tPA remains the only FDA-approved therapy, despite decades of work on potential neuroprotective agents.

Yu’s team takes a different tactic. They seek to bolster the brain’s recovery powers after stroke by mobilizing endogenous progenitor cells. I will call this approach “stem cells lite.”

journal.pone.0087284.g006

PTH appears to encourage new neurons in recovery in a mouse model of ischemic stroke. Green = recent cell division, red = neuronal marker

It is similar to that taken by cardiologist Arshed Quyyumi and colleagues with peripheral artery disease: use a growth factor (GM-CSF), which is usually employed for another purpose, to get the body’s own regenerative agents to emerge from the bone marrow.

In this case, Yu’s team was using parathyroid hormone (PTH), which is an FDA-approved treatment for osteoporosis. They administered it, beginning one hour after loss of blood flow, in a mouse model of ischemic stroke. They found that daily treatment with PTH spurs production of endogenous regenerative factors in the stroke-affected area of the brain. They observed both increased new neuron formation and sensorimotor functional recovery. However, PTH does not pass through the blood-brain barrier and does not change the size of the stroke-affected area, the researchers found.

The conclusion of the paper hints at their next steps:

As this is the first report on this PTH therapy for ischemic stroke for the demonstration of the efficacy and feasibility, PTH treatment was initiated at 1 hr after stroke followed by repeated administrations for 6 days. We expect that even more delayed treatment of PTH, e.g. several hrs after stroke, can be beneficial in promoting chronic angiogenesis and other tissue repair processes. This possibility, however, remains to be further evaluated in a more translational investigation.

Posted on by Quinn Eastman in Neuro 1 Comment