Warren symposium follows legacy of geneticist giant

If we want to understand how the brain creates memories, and how genetic disorders distort the brain’s machinery, then the fragile X gene is an ideal place to start. That’s why the Stephen T. Warren Memorial Symposium, taking place November 28-29 at Emory, will be a significant event for those interested in neuroscience and genetics. Stephen T. Warren, 1953-2021 Warren, the founding chair of Emory’s Department of Human Genetics, led an international team that discovered Read more

Mutations in V-ATPase proton pump implicated in epilepsy syndrome

Why and how disrupting V-ATPase function leads to epilepsy, researchers are just starting to figure Read more

Tracing the start of COVID-19 in GA

At a time when COVID-19 appears to be receding in much of Georgia, it’s worth revisiting the start of the pandemic in early 2020. Emory virologist Anne Piantadosi and colleagues have a paper in Viral Evolution on the earliest SARS-CoV-2 genetic sequences detected in Georgia. Analyzing relationships between those virus sequences and samples from other states and countries can give us an idea about where the first COVID-19 infections in Georgia came from. We can draw Read more

Neisseria meningitidis

Meningitis bacteria adapt to STI niche — again?

A new paper in PNAS from Emory scientists highlights a neat example of bacterial evolution and adaptation related to sexually transmitted infections. Neisseria meningitidis, a bacterium usually associated with meningitis and sepsis, sometimes appears in the news because of cases on college campuses or other outbreaks.

The N meningitidis bacteria causing a recent cluster of sexually transmitted infections in Columbus, Ohio and other US cities have adapted to the urogenital environment, an analysis of their DNA shows.

Update: May 2016 Clinical Infectious Diseases paper on the same urethritis cluster.

Genetic changes make this clade look more like relatives that are known to cause gonorrhea. Some good news is that these guys are less likely to cause meningitis because they have lost their outer capsule. They have also gained enzymes that help them live in low oxygen.

The DNA analysis helps doctors track the spread of this type of bacteria and anticipate which vaccines might be protective against it. Thankfully, no alarming antibiotic resistance markers are present (yet) and currently available vaccines may be helpful. Full press release here, and information about meningococcal disease from the CDC here.

This looks like a well-worn path in bacterial evolution, since N. gonorrhoeae is thought to have evolved from N. meningitidis and there are recent independent examples of N. meningitidis adapting to the urogenital environment. 

Posted on by Quinn Eastman in Immunology Leave a comment