Two items relevant to long COVID

One of the tricky issues in studying in long COVID is: how widely do researchers cast their net? Initial reports acknowledged that people who were hospitalized and in intensive care may take a while to get back on their feet. But the number of people who had SARS-CoV-2 infections and were NOT hospitalized, yet experienced lingering symptoms, may be greater. A recent report from the United Kingdom, published in PLOS Medicine, studied more than Read more

All your environmental chemicals belong in the exposome

Emory team wanted to develop a standard low-volume approach that would avoid multiple processing steps, which can lead to loss of material, variable recovery, and the potential for Read more

Signature of success for an HIV vaccine?

Efforts to produce a vaccine against HIV/AIDS have been sustained for more than a decade by a single, modest success: the RV144 clinical trial in Thailand, whose results were reported in 2009. Now Emory, Harvard and Case Western Reserve scientists have identified a gene activity signature that may explain why the vaccine regimen in the RV144 study was protective in some individuals, while other HIV vaccine studies were not successful. The researchers think that this signature, Read more

Neale Weitzmann

Bone-strengthening particles stimulate autophagy

Neale Weitzmann and George Beck have been publishing a series of papers describing how silica nanoparticles can increase bone mineral density in animals. Their findings could someday form the basis for a treatment for osteoporosis.

In 2012, we posted an article and video on this topic. We wanted to call attention to a few of the team’s recent papers, one of which probes the mechanism for a remarkable phenomenon: how can very fine silica particles stimulate bone formation?

The particles’ properties seem to depend on their size: 50 nanometers wide – smaller than a HIV or influenza vision. In a 2014 ACS Nano paper, Beck, Weitzmann and postdoc Shin-Woo Ha show that the particles interact with particular proteins involved in the process of autophagy, a process of “self digestion” induced by stress.

“These studies suggest that it is not the material per se that stimulates autophagy but rather size or shape,” they write. Read more

Posted on by Quinn Eastman in Uncategorized Leave a comment

Strengthening bone with silica nanoparticles

Tiny particles of silicon dioxide – essentially, extremely fine sand — can strengthen bones when introduced into animals, researchers at Emory University School of Medicine have discovered.

The particles stimulate the generation of bone-forming cells and inhibit other cells that break down bone. The findings could someday form the basis for an alternative treatment for osteoporosis.

The results were published recently in the journal Nanomedicine.

The paper represents a collaboration between the laboratories of George Beck and Neale Weitzmann, both in the Division of Endocrinology, Metabolism and Lipids. The project started when Jin-Kyu Lee, now at Seoul National University, came to Beck’s lab with silica nanoparticles he had developed that contained fluorescent dyes. This allowed researchers to track the particles within the body and within cells.

In the laboratory, the nanoparticles stimulate the generation of bone-forming osteoblasts and inhibit the maturation of bone-remodeling osteoclasts. Beck says that the particles’ properties seem to depend on their size (50 nanometers wide) and shape, because larger particles don’t have the same effects. The nanoparticles appear to work by being taken up by the cells and then by inhibiting NF-kB, a molecule that controls inflammation.

Silicon is a trace element in the diet of most people. Scientists have known for several years that dietary silicon is linked to strong bones, but how silicon influences bone growth has remained unclear: it could become physically incorporated into bone, or it could provide signals to the cells that make up bone. To be sure, silica nanoparticles may be acting in a way that is different than dietary silicon.

The particles’ ability to stimulate osteoblasts distinguish them from bisphosphonates, the most common drugs now used to treat osteoporosis, Beck says. Bisphosphonates only inhibit bone breakdown and do not stimulate bone formation.

The Emory team has found that injecting silica nanoparticles can increase the bone density of young mice by roughly 15 percent over six weeks, augmenting the increases coming from adolescent growth.

To test the particles’ potential for use with humans, the researchers are examining whether injection is the best way to deliver the nanoparticles, and whether long-term toxicity is an issue. Inhalation of larger particles of silica dust, an occupational hazard for miners and construction workers, can result in the lung disease silicosis. However, silicosis arises because the lungs can’t absorb and remove the larger dust particles. Since cells clearly can take up the nanoparticles (see video), it is possible that they will not induce the body to respond similarly.

Emory has applied for patents on this technology. A presentation by Emory’s Office of Technology Transfer is available here.

Posted on by Quinn Eastman in Uncategorized Leave a comment