Warren symposium follows legacy of geneticist giant

If we want to understand how the brain creates memories, and how genetic disorders distort the brain’s machinery, then the fragile X gene is an ideal place to start. That’s why the Stephen T. Warren Memorial Symposium, taking place November 28-29 at Emory, will be a significant event for those interested in neuroscience and genetics. Stephen T. Warren, 1953-2021 Warren, the founding chair of Emory’s Department of Human Genetics, led an international team that discovered Read more

Mutations in V-ATPase proton pump implicated in epilepsy syndrome

Why and how disrupting V-ATPase function leads to epilepsy, researchers are just starting to figure Read more

Tracing the start of COVID-19 in GA

At a time when COVID-19 appears to be receding in much of Georgia, it’s worth revisiting the start of the pandemic in early 2020. Emory virologist Anne Piantadosi and colleagues have a paper in Viral Evolution on the earliest SARS-CoV-2 genetic sequences detected in Georgia. Analyzing relationships between those virus sequences and samples from other states and countries can give us an idea about where the first COVID-19 infections in Georgia came from. We can draw Read more

Nathan Killian

Nobel Prize for place cells + grid cells

Congratulations to John O’Keefe, May-Britt Moser and Edvard Moser for receiving the 2014 Nobel Prize in Medicine. The prize is for discovering “the brain’s navigation system”: place cells, cells in the hippocampus which are active whenever a rat is in a particular place, and grid cells, cells in the entorhinal cortex which are active when the animal is at multiple locations in a grid pattern.

Former Yerkes researcher Beth Buffalo and her graduate student Nathan Killian were the first to directly detect, via electrode recordings, grid cells in the brains of non-human primates. Buffalo is now at the University of Washington and Killian is at Harvard Medical School.

A significant difference about their experiments was that they could identify grid cells when monkeys were moving their eyes, suggesting that primates don’t have to actually visit a place to construct the same kind of mental map. Another aspect of grid cells in non-human primates not previously seen with rodents is that the cells’ responses change when monkeys are seeing an image for the second time.

Following that report, grid cells were also directly detected in human epilepsy patients. The Mosers themselves noted in a 2014 review, “It will be interesting to see whether the same cells that respond to visual movement in monkeys also respond to locomotion, or whether there is a separate system of grid cells that is responsive to locomotion.”

Posted on by Quinn Eastman in Neuro Leave a comment