Warren symposium follows legacy of geneticist giant

If we want to understand how the brain creates memories, and how genetic disorders distort the brain’s machinery, then the fragile X gene is an ideal place to start. That’s why the Stephen T. Warren Memorial Symposium, taking place November 28-29 at Emory, will be a significant event for those interested in neuroscience and genetics. Stephen T. Warren, 1953-2021 Warren, the founding chair of Emory’s Department of Human Genetics, led an international team that discovered Read more

Mutations in V-ATPase proton pump implicated in epilepsy syndrome

Why and how disrupting V-ATPase function leads to epilepsy, researchers are just starting to figure Read more

Tracing the start of COVID-19 in GA

At a time when COVID-19 appears to be receding in much of Georgia, it’s worth revisiting the start of the pandemic in early 2020. Emory virologist Anne Piantadosi and colleagues have a paper in Viral Evolution on the earliest SARS-CoV-2 genetic sequences detected in Georgia. Analyzing relationships between those virus sequences and samples from other states and countries can give us an idea about where the first COVID-19 infections in Georgia came from. We can draw Read more

mucosal vaccines

HIV vaccine news: a glass half full

This week, researchers from Yerkes and Emory Vaccine Center led by Cindy Derdeyn published a paper that I first thought was disturbing. It describes how monkeys vaccinated against HIV’s relative SIV (simian immunodeficiency virus) still become infected when challenged with the virus. Moreover, it’s not clear whether the vaccine-induced antibodies are exerting any selective pressure on the virus that gets through.

But then I realized that this might be an example of “burying the lead,” since we haven’t made a big hoopla about the underlying vaccine studies, conducted by Rama Amara. Some of these studies showed that a majority of monkeys can be protected from repeated viral challenge. The more effective vaccine regimens include adjuvants such as the immune-stimulating molecules GM-CSF or CD40L (links are the papers on the protective effects). Read more

Posted on by Quinn Eastman in Immunology Leave a comment

Respiratory infection may lead to weaker immunological memory

How you vaccinate helps determine how you protect. This idea lies behind many researchers’ interest in mucosal vaccines. How a vaccine is administered (orally/nasally vs intramuscular, for example) could make a difference later, when the immune system faces the bad guys the vaccine is supposed to strengthen defenses against.

How does the route of immunization affect the quality of immunity later on? For example, is a nasal spray best when trying to prevent respiratory infections?

A recent paper from Emory Vaccine Center director Rafi Ahmed’s laboratory challenges this idea. The paper was published in the Journal of Immunology. Scott Mueller, now an Australian Research Council research fellow at the University of Melbourne, is first author.

Memory T cells are a key part of a response to a vaccine, because they stick around after an infection, enabling the immune system to fight an invading virus more quickly and strongly the second time around. In the paper, the Emory team compared memory T cells that form in mice after they are infected in the respiratory system by a flu virus or throughout their bodies by a virus that causes meningitis (lymphocytic choriomeningitis virus or LCMV).

The authors engineered a flu virus to carry a tiny bit of LCMV (an epitope, in immunological terms) so that they could compare apples to apples by measuring the same kind of T cells. They found that memory T cells generated after a flu infection are weaker, in that they proliferate and stimulate other immune cells less, than after a LCMV infection. This goes against the idea that after a respiratory infection, the immune system will be better able to face a challenge in the respiratory system.

Read more

Posted on by Quinn Eastman in Immunology Leave a comment