Multiple myeloma patients display weakened antibody responses to mRNA COVID vaccines

Weakened antibody responses to COVID-19 mRNA vaccines among most patients with multiple Read more

Precision medicine with multiple myeloma

“Precision medicine” is an anti-cancer treatment strategy in which doctors use genetic or other tests to identify vulnerabilities in an individual’s cancer subtype. Winship Cancer Institute researchers have been figuring out how to apply this strategy to multiple myeloma, with respect to one promising drug called venetoclax, in a way that can benefit the most patients. Known commercially as Venclexta, venetoclax is already FDA-approved for some forms of leukemia and lymphoma. Researchers had observed that multiple Read more

Promiscuous protein droplets regulate immune gene activity

Biochemists at Emory are achieving insights into how an important regulator of the immune system switches its function, based on its orientation and local environment. New research demonstrates that the glucocorticoid receptor (or GR) forms droplets or “condensates” that change form, depending on its available partners. The inside of a cell is like a crowded nightclub or party, with enzymes and other proteins searching out prospective partners. The GR is particularly well-connected and promiscuous, and Read more

Ling Wei

Alternative model for Alzheimer’s neurodegeneration

In recent debate over the FDA’s approval of the Alzheimer’s drug aducanumab, we’ve heard a lot about the “amyloid hypothesis.” In that context, it’s refreshing to learn about a model of Alzheimer’s neurodegeneration that doesn’t start with the pathogenic proteins amyloid or Tau.

Instead, a new paper in Alzheimer’s & Dementia from Emory neuroscientist Shan Ping Yu and colleagues focuses on an unusual member of the family of NMDA receptors, signaling molecules that are critical for learning and memory. Their findings contain leads for additional research on Alzheimer’s, including drugs that are already FDA-approved that could be used preventively, and genes to look at for risk factors.

“It’s not just another rodent model of Alzheimer’s,” Yu says. “We are emphasizing a different set of mechanisms leading to neurodegeneration.”

Read more

Posted on by Quinn Eastman in Neuro Leave a comment

PTH for stroke: stem cells lite

I’d like to highlight a paper in PLOS One from anesthesiologists Shan Ping Yu and Ling Wei’s group that was published earlier this year. [Sorry for missing it then!] They are investigating potential therapies for stroke, long a frustrating area of clinical research. The “clot-busting” drug tPA remains the only FDA-approved therapy, despite decades of work on potential neuroprotective agents.

Yu’s team takes a different tactic. They seek to bolster the brain’s recovery powers after stroke by mobilizing endogenous progenitor cells. I will call this approach “stem cells lite.”

journal.pone.0087284.g006

PTH appears to encourage new neurons in recovery in a mouse model of ischemic stroke. Green = recent cell division, red = neuronal marker

It is similar to that taken by cardiologist Arshed Quyyumi and colleagues with peripheral artery disease: use a growth factor (GM-CSF), which is usually employed for another purpose, to get the body’s own regenerative agents to emerge from the bone marrow.

In this case, Yu’s team was using parathyroid hormone (PTH), which is an FDA-approved treatment for osteoporosis. They administered it, beginning one hour after loss of blood flow, in a mouse model of ischemic stroke. They found that daily treatment with PTH spurs production of endogenous regenerative factors in the stroke-affected area of the brain. They observed both increased new neuron formation and sensorimotor functional recovery. However, PTH does not pass through the blood-brain barrier and does not change the size of the stroke-affected area, the researchers found.

The conclusion of the paper hints at their next steps:

As this is the first report on this PTH therapy for ischemic stroke for the demonstration of the efficacy and feasibility, PTH treatment was initiated at 1 hr after stroke followed by repeated administrations for 6 days. We expect that even more delayed treatment of PTH, e.g. several hrs after stroke, can be beneficial in promoting chronic angiogenesis and other tissue repair processes. This possibility, however, remains to be further evaluated in a more translational investigation.

Posted on by Quinn Eastman in Neuro 1 Comment