Warren symposium follows legacy of geneticist giant

If we want to understand how the brain creates memories, and how genetic disorders distort the brain’s machinery, then the fragile X gene is an ideal place to start. That’s why the Stephen T. Warren Memorial Symposium, taking place November 28-29 at Emory, will be a significant event for those interested in neuroscience and genetics. Stephen T. Warren, 1953-2021 Warren, the founding chair of Emory’s Department of Human Genetics, led an international team that discovered Read more

Mutations in V-ATPase proton pump implicated in epilepsy syndrome

Why and how disrupting V-ATPase function leads to epilepsy, researchers are just starting to figure Read more

Tracing the start of COVID-19 in GA

At a time when COVID-19 appears to be receding in much of Georgia, it’s worth revisiting the start of the pandemic in early 2020. Emory virologist Anne Piantadosi and colleagues have a paper in Viral Evolution on the earliest SARS-CoV-2 genetic sequences detected in Georgia. Analyzing relationships between those virus sequences and samples from other states and countries can give us an idea about where the first COVID-19 infections in Georgia came from. We can draw Read more

Karl Deisseroth

Manipulating neurons with light

Welcome to a feature of Lab Land we hope to have on a regular basis! It’s where we explain a word or phrase that is a hot topic of discussion in the science online world and particularly relevant to research going on at Emory.

Optogenetics allows researchers to stimulate specific brain cells with light. It involves introducing light-sensitive proteins from algae into the brain cells of mice, and then using a fiber optic cable to apply a laser signal to the relevant region of the brain.

Optogenetics is a leap beyond previous genetic engineering techniques that made it possible to turn on (or delete) a gene by feeding a mouse some extraneous chemical, such as the antibiotic tetracycline or the anti-hormone tamoxifen. Instead of wondering how long it takes that chemical to make its way into the brain, scientists can literally flick a switch and see near-instantaneous and localized effects. Read more

Posted on by Quinn Eastman in Neuro Leave a comment