Detecting vulnerable plaque with a laser-induced whisper

A relatively new imaging technique called photoacoustic imaging or PAI detects sounds produced when laser light interacts with human tissues. Working with colleagues at Michigan State, Emory immunologist Eliver Ghosn’s lab is taking the technique to the next step to visualize immune cells within atherosclerotic plaques. The goal is to more accurately spot vulnerable plaque, or the problem areas lurking within arteries that lead to clots, and in turn heart attacks and strokes. A description Read more

Multiple myeloma patients display weakened antibody responses to mRNA COVID vaccines

Weakened antibody responses to COVID-19 mRNA vaccines among most patients with multiple Read more

Precision medicine with multiple myeloma

“Precision medicine” is an anti-cancer treatment strategy in which doctors use genetic or other tests to identify vulnerabilities in an individual’s cancer subtype. Winship Cancer Institute researchers have been figuring out how to apply this strategy to multiple myeloma, with respect to one promising drug called venetoclax, in a way that can benefit the most patients. Known commercially as Venclexta, venetoclax is already FDA-approved for some forms of leukemia and lymphoma. Researchers had observed that multiple Read more

information technology

University global alliance partners with Rollins

Rollins School of Public Health

Emory’s Rollins School of Public Health is one of five organizations that have joined to form the University Global Alliance Program (UGAP).

The initiative, launched March 2 by the Northrop Grumman Corporation, aims to unite higher education and the private sector to accelerate the application of thought leadership to global public health informatics, policy development, strategic planning, programmatic implementation and evaluation.

In addition to Emory, the UGAP alliance includes The Satcher Leadership Institute of the Morehouse School of Medicine, Georgia State University, the Georgia Institute of Technology and the Colorado School of Public Health. The universities were chosen for their innovative research in public health and their interest in advancing public health practice through applied technology and informatics.

Read more

Posted on by admin in Uncategorized Leave a comment

Biomedical informatics impact on health care outcomes

Biomedical informatics is a multi-disciplinary field, involving the collection, management, analysis and integration of data in biomedicine used for research and healthcare delivery.

DNA double helix

DNA double helix

According to Joel H. Saltz, MD, PhD, director of Emory’s Center for Comprehensive Informatics, biomedical informatics enhances medical research via technology by making it possible to collect, weed through and analyze widespread data on patient treatments and outcomes.

Saltz is a Georgia Research Alliance Eminent Scholar and serves as chief medical information officer at Emory Healthcare and as a professor in the departments of pathology, biostatistics and bioinformatics, and mathematics and computer science at Emory.

Joel H. Saltz, MD, PhD

Joel H. Saltz, MD, PhD

A recent essay excerpted below, published by Knowledge@Emory, says advances in information technology are becoming increasingly critical to disease treatment and administrative efficiency at healthcare facilities.

Given the national debate over costs in the healthcare system, medical practitioners and IT experts say that the evolving field of biomedical informatics can provide large scale improvements in treatment processes, and ultimately, in the price tag for care.

Saltz notes in the article that biomedical informatics can be applied to any subset of medical research, giving clinicians access to “rich” or large pools of patient data and applying technological solutions and mathematical modeling to the process.

He says that the overarching goal of the Center is to foster collaboration between scientific and software systems researchers. However, the synthesis of medical information from disparate and numerous sources remains a key research effort at the Center and for other institutions and companies in the biomedical informatics field

The Center was selected recently as an In Silico Brain Tumor Research Center and will use advanced informatics tools and databases to discover more effective brain tumor treatments. Read here for more information about projects at the Center.

Posted on by admin in Uncategorized Leave a comment