Warren symposium follows legacy of geneticist giant

If we want to understand how the brain creates memories, and how genetic disorders distort the brain’s machinery, then the fragile X gene is an ideal place to start. That’s why the Stephen T. Warren Memorial Symposium, taking place November 28-29 at Emory, will be a significant event for those interested in neuroscience and genetics. Stephen T. Warren, 1953-2021 Warren, the founding chair of Emory’s Department of Human Genetics, led an international team that discovered Read more

Mutations in V-ATPase proton pump implicated in epilepsy syndrome

Why and how disrupting V-ATPase function leads to epilepsy, researchers are just starting to figure Read more

Tracing the start of COVID-19 in GA

At a time when COVID-19 appears to be receding in much of Georgia, it’s worth revisiting the start of the pandemic in early 2020. Emory virologist Anne Piantadosi and colleagues have a paper in Viral Evolution on the earliest SARS-CoV-2 genetic sequences detected in Georgia. Analyzing relationships between those virus sequences and samples from other states and countries can give us an idea about where the first COVID-19 infections in Georgia came from. We can draw Read more

Guido Silvestri

Update on SIV remission studies

Tab Ansari’s research at Emory/Yerkes on how an antibody treatment can push monkeys infected with SIV into remission was published in Science last year. At that time, Ansari told Lab Land about follow-up experiments to probe which immune cells are needed for this effect, which surprised many HIV/AIDS experts.

Ansari’s partner on the project, NIAID director Anthony Fauci, described the follow-up work in July at the International AIDS Society Conference in Paris. We thank Treatment Action Group’s Richard Jefferys for taking notes and posting a summary:

The approach that the researchers took was to deplete different types of immune cells in the animals controlling SIV viral load, then assess whether this led to an increase in viral replication. The experiments compared:

*Antibodies to the CD8 receptor alpha chain, which deplete CD8 T cells, natural killer T cells (NKTs) and natural killer (NK) cells

*Antibodies to the CD8 receptor beta chain, which deplete CD8 T cells

*Antibodies to CD20, which deplete B cells

According to Fauci’s slides, which are available online, there was a transient rebound in viral load with the CD8 alpha antibody and to a small degree with the CD8 beta. This suggests NKTs and NK cells are making a contribution to the observed control of SIV replication, but a role for CD8 T cells cannot be ruled out.

For comparison, a study from Guido Silvestri and colleagues at Yerkes published in 2016 found that treating SIV-infected monkeys with anti-CD8 antibodies, without stopping antiretroviral drugs, resulted in a rebound in virus levels. [They used ultrasensitive assays to detect the rebound.] However, the Yerkes team only used antibodies to the CD8 receptor alpha chain.

Read more

Posted on by Quinn Eastman in Immunology Leave a comment

From Berlin to Yerkes

Yerkes immunologist Guido Silvestri and colleagues have a paper in PLOS Pathogens shedding light on the still singular example of Timothy Brown, aka “the Berlin patient”, the only human cured of HIV. Hat tip to Jon Cohen of Science, who has a great explanatory article.

Recall that Brown had lived with HIV for several years, controlling it with antiretroviral drugs, before developing acute myeloid leukemia. In Berlin, as treatment for the leukemia, he received a bone marrow transplant — and not just from any donor; the donor had a HIV-resistance mutation. What was the critical ingredient that enabled HIV to be purged from his body?

Conditioning: the chemotherapy/radiation treatment that eliminates the recipient’s immune system before transplant? HIV-resistant donor cells? Or graft-vs-host disease: the new immune system attacking the old?

Silvestri and colleagues performed experiments with SHIV-infected non-human primates that duplicate most, but not all, of the elements of Brown’s odyssey. The results demonstrate that conditioning, by itself, does not eliminate the virus from the body. But in one animal, it came close. Frustratingly, that animal’s kidneys failed and researchers had to euthanize it. In two others, the virus came back after transplant.

A critical difference from Brown’s experience is that monkeys received their own virus-free blood-forming stem cells instead of virus-resistant cells. Cohen reports that Silvestri hopes to do future monkey experiments that test more of these variables, including transplanting the animals with viral-resistant blood cells that mimic the ones that Brown received. 

Posted on by Quinn Eastman in Immunology Leave a comment

One reason why SIV-infected sooty mangabeys can avoid AIDS

Sooty mangabeys are a variety of Old World monkey that can be infected by HIV’s cousin SIV, but do not get AIDS. Emory immunologist and Georgia Research Alliance Eminent Scholar Guido Silvestri, MD, has been a strong advocate for examining non-human primates such as the sooty mangabey, which manage to handle SIV infection without crippling their immune systems. Silvestri is division chief of microbiology and immunology at Yerkes National Primate Research Center.

Research shows sooty mangabeys have T cells that can do the same job as those targeted by SIV, even if they don't have the same molecules on their surfaces

A recent paper in the Journal of Clinical Investigation reveals that sooty mangabeys have T cells that perform the same functions as those targeted by SIV and HIV, but have different clothing.

Silvestri and James Else, the animal resources division chief at Yerkes, are co-authors on the paper, while Donald Sodora at Seattle Biomedical Research Institute is senior author.

One main target for SIV and HIV is the group of T cells with the molecule CD4 on their surfaces. These are the “helper” T cells that keep the immune system humming. Doctors treating people with HIV infections tend to keep an eye on their CD4 T cell counts.

In the paper, the scientists show that sooty mangabeys infected with SIV lose their CD4 T cells, without losing the ability to regulate their immune systems. What’s remarkable here is that sooty mangabeys appear to have “double negative” or DN T cells that can perform the same functions as those lost to SIV infection, even though they don’t have CD4.

CD4 isn’t just decoration for T cells. It’s a part of how they recognize bits of host or pathogen protein in the context of MHC class II (the molecule that “presents” the bits on the outside of target cells). Somehow, the T cells in sooty mangabeys have a way to get around this requirement and still regulate the immune system competently. How they do this is the topic of ongoing research.

The authors write:

It will be important to assess DN T cells in HIV-infected patients, particularly to determine whether these cells are preserved and functional in long-term nonprogressors. These efforts may lead to future immune therapies or vaccine modalities designed to modulate DN T cell function. Indeed, the main lesson we have learned to date from this cohort of SIV-infected CD4-low mangabeys may be that managing immune activation and bolstering the function of nontarget T cells through better vaccines and therapeutics has the potential to contribute to preserved immune function and a nonprogressive outcome in HIV infection even when CD4+ T cell levels become low.

Posted on by Quinn Eastman in Immunology Leave a comment

Scientists still searching for HIV’s lethal ways

Guido Silvestri, MD

It’s a knotty, complex question, and one that’s nearly 30 years old: how does HIV cause AIDS? That is, how does the virus slowly destroy the immune system?

Emory immunologist and Georgia Research Alliance Eminent Scholar Guido Silvestri, MD, and his colleagues are using a method called comparative AIDS research to try and answer that question. In other words, the scientists compare humans infected with HIV who develop AIDS and nonhuman primates from Africa who are infected with SIV, or simian immunodeficiency virus.

Silvestri is chief of the Division of Microbiology and Immunology at Yerkes National Primate Research Center.

Although SIV is very similar to HIV in terms of genetic and molecular structure, once infected with this virus, the Old World Monkey, the sooty mangabey, does not get sick.

“It’s a major mystery in AIDS research because these animals have virus replication that remains active in their body as long as they’re alive,” says Silvestri. “So, it’s not just the infection and the virus replicating that kills people. There’s something more that happens.”

Silvestri describes this research in Emory University’s Sound Science.

Posted on by admin in Immunology Leave a comment

What if HIV was just another virus

Imagine that HIV was a “normal” virus. An infection begins and the body responds, without getting trapped in a cycle where CD4+ T cells are consumed and the immune system is crippled.

SIV can infect sooty mangabeys but it doesn't cripple their immune systems.

The attractiveness of this idea explains some of why scientists are interested in sooty mangabeys and other non-human primates. HIV’s relative SIV can infect them, but they usually don’t develop immunodeficiency.

At last week’s AIDS Vaccine 2010 conference, Cynthia Derdeyn reported her laboratory’s recent results investigating sooty mangabeys, which don’t develop high levels of neutralizing antibodies against SIV when infected. Derdeyn’s group at Emory Vaccine Center and Yerkes National Primate Research Center studies how HIV and SIV evade the immune system.

Read more

Posted on by Quinn Eastman in Immunology Leave a comment