Molecular picture of how antiviral drug molnupiravir works

A cryo-EM structure showing how the antiviral drug molnupiravir drug Read more

Straight to the heart: direct reprogramming creates cardiac “tissue” in mice

New avenues for a quest many cardiologists have pursued: repairing the damaged heart like patching a Read more

The future of your face is plastic

An industrial plastic stabilizer becomes a skin Read more

granulin

Granulins treasure not trash – potential FTD treatment strategy

Emory University School of Medicine researchers have developed tools that enable them to detect small proteins called granulins for the first time inside cells. Granulins are of interest to neuroscientists because mutations in the granulin gene cause frontotemporal dementia (FTD). However, the functions of granulins were previously unclear.

FTD is an incurable neurodegenerative disease and the most common type of dementia in people younger than 60. Genetic variants in the granulin gene are also a risk factor for Alzheimer’s disease and Parkinson’s disease, suggesting this discovery may have therapeutic potential for a broad spectrum of age-related neurodegenerative diseases.

The results were published August 9 by the journal eNeuro (open access).

Thomas Kukar, PhD

Some neuroscientists believed that granulins were made outside cells, and even could be toxic under certain conditions. But with the newly identified tools, the Emory researchers can now see granulins inside cells within lysosomes, which are critical garbage disposal and recycling centers. The researchers now propose that granulins have important jobs in the lysosome that are necessary to maintain brain health, suppress neuroinflammation, and prevent neurodegeneration.

Problems with lysosomes appear in several neurodegenerative diseases such as Alzheimer’s and Parkinson’s.

“A lysosomal function for granulins is exciting and novel.  We believe it may provide an explanation why decreased levels of granulins are linked to multiple neurodegenerative diseases, ranging from frontotemporal dementia to Alzheimer’s,” says senior author Thomas Kukar, PhD, assistant professor of pharmacology and neurology and the Emory University Center for Neurodegenerative Disease. Read more

Posted on by Quinn Eastman in Neuro Leave a comment