Warren symposium follows legacy of geneticist giant

If we want to understand how the brain creates memories, and how genetic disorders distort the brain’s machinery, then the fragile X gene is an ideal place to start. That’s why the Stephen T. Warren Memorial Symposium, taking place November 28-29 at Emory, will be a significant event for those interested in neuroscience and genetics. Stephen T. Warren, 1953-2021 Warren, the founding chair of Emory’s Department of Human Genetics, led an international team that discovered Read more

Mutations in V-ATPase proton pump implicated in epilepsy syndrome

Why and how disrupting V-ATPase function leads to epilepsy, researchers are just starting to figure Read more

Tracing the start of COVID-19 in GA

At a time when COVID-19 appears to be receding in much of Georgia, it’s worth revisiting the start of the pandemic in early 2020. Emory virologist Anne Piantadosi and colleagues have a paper in Viral Evolution on the earliest SARS-CoV-2 genetic sequences detected in Georgia. Analyzing relationships between those virus sequences and samples from other states and countries can give us an idea about where the first COVID-19 infections in Georgia came from. We can draw Read more

frontotemporal dementia

New insight into how brain cells die in Alzheimer’s and FTD

Removal of a regulatory gene called LSD1 in adult mice induces changes in gene activity that look unexpectedly like Alzheimer’s disease, scientists have discovered.

Researchers also discovered that LSD1 protein is perturbed in brain samples from humans with Alzheimer’s disease and frontotemporal dementia (FTD). Based on their findings in human patients and mice, the research team is proposing LSD1 as a central player in these neurodegenerative diseases and a drug target.

David Katz, PhD

The results were published Oct. 9 in Nature Communications.

In the brain, LSD1 (lysine specific histone demethylase 1) maintains silence among genes that are supposed to be turned off. When the researchers engineered mice that have the LSD1 gene snipped out in adulthood, the mice became cognitively impaired and paralyzed. Plenty of neurons were dying in the brains of LSD1-deleted mice, although other organs seemed fine. However, they lacked aggregated proteins in their brains, like those thought to drive Alzheimer’s disease and FTD.

“In these mice, we are skipping the aggregated proteins, which are usually thought of as the triggers of dementia, and going straight to the downstream effects,” says David Katz, PhD, assistant professor of cell biology at Emory University School of Medicine. Read more

Posted on by Quinn Eastman in Neuro Leave a comment

Granulins treasure not trash – potential FTD treatment strategy

Emory University School of Medicine researchers have developed tools that enable them to detect small proteins called granulins for the first time inside cells. Granulins are of interest to neuroscientists because mutations in the granulin gene cause frontotemporal dementia (FTD). However, the functions of granulins were previously unclear.

FTD is an incurable neurodegenerative disease and the most common type of dementia in people younger than 60. Genetic variants in the granulin gene are also a risk factor for Alzheimer’s disease and Parkinson’s disease, suggesting this discovery may have therapeutic potential for a broad spectrum of age-related neurodegenerative diseases.

The results were published August 9 by the journal eNeuro (open access).

Thomas Kukar, PhD

Some neuroscientists believed that granulins were made outside cells, and even could be toxic under certain conditions. But with the newly identified tools, the Emory researchers can now see granulins inside cells within lysosomes, which are critical garbage disposal and recycling centers. The researchers now propose that granulins have important jobs in the lysosome that are necessary to maintain brain health, suppress neuroinflammation, and prevent neurodegeneration.

Problems with lysosomes appear in several neurodegenerative diseases such as Alzheimer’s and Parkinson’s.

“A lysosomal function for granulins is exciting and novel.  We believe it may provide an explanation why decreased levels of granulins are linked to multiple neurodegenerative diseases, ranging from frontotemporal dementia to Alzheimer’s,” says senior author Thomas Kukar, PhD, assistant professor of pharmacology and neurology and the Emory University Center for Neurodegenerative Disease. Read more

Posted on by Quinn Eastman in Neuro Leave a comment

Emory neuro-researchers in Alzforum

Just a shoutout regarding Emory folks in Alzforum, the research news site focusing on Alzheimer’s and other neurodegenerative disorders.

Alzforum recently highlighted proteomics wizard Nick Seyfried’s presentation at a June meeting in Germany (Alzheimer’s Proteomics Treasure Trove). This includes work from the Emory ADRC and Baltimore Longitudinal Study of Aging that was published in Cell Systems in December: the first large-scale systems biology analysis of post-mortem brain proteins in Alzheimer’s. The idea is to have a fresh “unbiased” look at proteins involved in Alzheimer’s.

Also, neuroscientists Malu Tansey and Tom Kukar have been teaming up to provide detailed comments on papers being reported in Alzforum. Here’s one on inflammation related to gene alterations in frontotemporal dementia, and another on auto-immune responses in Parkinson’s.

Posted on by Quinn Eastman in Neuro Leave a comment

A sweet brain preserver: trehalose

It’s sweet, it’s safe, and it looks like it could save neurons. What is it? Trehalose.

Trehalose molecule

Trehalose is a natural sugar.

This natural sugar is used in the food industry as a preservative and flavor enhancer (it’s in Taco Bell’s meat filling). And curiously, medical researchers keep running into trehalose when they’re looking for ways to fight neurodegenerative diseases.

A recent example from Emory’s Department of Pharmacology: Chris Holler, Thomas Kukar and colleagues were looking for drugs that might boost human cells’ production of progranulin (PGRN), a growth factor that keeps neurons healthy. Mutations in the progranulin gene are a common cause of frontotemporal dementia.

The Emory scientists discovered two leads: a class of compounds called mTOR inhibitors — the transplant drug rapamycin is one — and trehalose. The team decided to concentrate on trehalose because it increased PGRN levels in neuronal and non-neuronal cell types, unlike the mTOR inhibitors. Their results were published at the end of June in Molecular Neurodegeneration.

The team confirmed their findings by examining the effects of trehalose on cells derived from patients with progranulin mutations. This paper is the first to include results from Emory’s Laboratory of Translational Cell Biology, which was established in 2012 to facilitate this type of “disease in a dish” approach. Cell biologists Charles Easley, Wilfried Rossoll and Gary Bassell from the LTCB, and neurologists Chad Hales and William Hu from the Center for Neurodegenerative Disease are co-authors.

Read more

Posted on by Quinn Eastman in Neuro 1 Comment

Acidity of aging leads to new Alzheimer’s drug target

Pathologist Keqiang Ye and his colleagues have been studying the functions of an enzyme called AEP, or asparagine endopeptidase, in the brain. AEP is activated by acidic conditions, such as those induced by stroke or seizure.

AEP is a protease. That means it acts as a pair of scissors, snipping pieces off other proteins. In 2008, his laboratory published a paper in Molecular Cell describing how AEP’s acid-activated snipping can unleash other enzymes that break down brain cells’ DNA.

Following a hunch that AEP might be involved in neurodegenerative diseases, Ye’s team has discovered that AEP also acts on tau, which forms neurofibrillary tangles in Alzheimer’s disease.

“We were looking for additional substrates for AEP,” Ye says. “We knew it was activated by acidosis. And we had read in the literature that the aging brain tends to be more acidic, especially in Alzheimer’s.”

The findings, published in Nature Medicine in October, point to AEP as a potential target for drugs that could slow the advance of Alzheimer’s, and may also lead to improved diagnostic tools. Read more

Posted on by Quinn Eastman in Neuro Leave a comment