Multiple myeloma patients display weakened antibody responses to mRNA COVID vaccines

Weakened antibody responses to COVID-19 mRNA vaccines among most patients with multiple Read more

Precision medicine with multiple myeloma

“Precision medicine” is an anti-cancer treatment strategy in which doctors use genetic or other tests to identify vulnerabilities in an individual’s cancer subtype. Winship Cancer Institute researchers have been figuring out how to apply this strategy to multiple myeloma, with respect to one promising drug called venetoclax, in a way that can benefit the most patients. Known commercially as Venclexta, venetoclax is already FDA-approved for some forms of leukemia and lymphoma. Researchers had observed that multiple Read more

Promiscuous protein droplets regulate immune gene activity

Biochemists at Emory are achieving insights into how an important regulator of the immune system switches its function, based on its orientation and local environment. New research demonstrates that the glucocorticoid receptor (or GR) forms droplets or “condensates” that change form, depending on its available partners. The inside of a cell is like a crowded nightclub or party, with enzymes and other proteins searching out prospective partners. The GR is particularly well-connected and promiscuous, and Read more

fragile X

Fragile X clinical trial update

A recent issue of Emory Health magazine had an article describing the progress of clinical trials for fragile X syndrome, the most common inherited cause of intellectual disability. The article included interviews with the parents of a boy, Samuel McKinnon, who is participating in one of the phase III clinical trials here at Emory.

Last week, results for the phase II study for the same medication were published in Science Translational Medicine. The drug, called STX209 or arbaclofen, is one of the first designed to treat the molecular changes in the brain caused by fragile X syndrome. STX209 shows some promise in its ability to reduce social withdrawal, a key symptom of fragile X syndrome.

In one case, a boy was able to attend his birthday party for the first time in his life. In the past, he had been too shy and couldn’t tolerate hearing people sing Happy Birthday to You, the study’s lead author Elizabeth Berry-Kravis, MD, PhD from Rush University, told USA Today.

These results have generated excitement among autism researchers and specialists, because a fraction of individuals with fragile X mutations have autism and the same drug strategy may be able to address deficits in other forms of autism.

Some caveats:
1. Autism and fragile X are not the same thing.
2. This was a phase II study, the phase III results are yet to come.
3. The study authors are up front about saying that the “primary endpoint” (irritability) showed no difference between drug and placebo.

A team led by Emory genetics chair Steve Warren identified the gene responsible for fragile X in 1991, and Emory scientists have been important players in figuring out its effects on the brain.

Warren and colleague Mika Kinoshita are co-authors on a companion paper in STM on treatment of fragile X mice. A thoughtful review piece in the same issue of STM lays out current issues in developing therapies for “childhood disorders of the synapse.”

Posted on by Quinn Eastman in Neuro Leave a comment

Fragile X protein: one toggle switch, many circuits

The fragile X protein — missing in the most common inherited form of intellectual disability — plays a central role in neurons and how they respond to external signals. Cell biologist Gary Bassell and his colleagues have been examining how the fragile X protein (FMRP) acts as a “toggle switch.”

Gary Bassell, PhD

FMRP controls the activity of several genes by holding on to the RNAs those genes encode. When neurons get an electrochemical signal from the outside, FMRP releases the RNAs, allowing the RNAs to be made into protein, and facilitating changes in the neurons linked to learning and memory.

The Bassell lab’s new paper in Journal of Neuroscience reveals the role of another player in this process. The first author is postdoctoral fellow Vijay Nalavadi.

The researchers show that neurons modify FMRP with ubiquitin, the cellular equivalent of a tag for trash pickup, after receiving an external signal. In general, cells attach ubiquitin to proteins so that the proteins get eaten up by the proteasome, the cellular trash disposal bin. Here, neurons are temporarily getting rid of FMRP, prolonging the effects of the external signal.

Posted on by Quinn Eastman in Neuro Leave a comment