Warren symposium follows legacy of geneticist giant

If we want to understand how the brain creates memories, and how genetic disorders distort the brain’s machinery, then the fragile X gene is an ideal place to start. That’s why the Stephen T. Warren Memorial Symposium, taking place November 28-29 at Emory, will be a significant event for those interested in neuroscience and genetics. Stephen T. Warren, 1953-2021 Warren, the founding chair of Emory’s Department of Human Genetics, led an international team that discovered Read more

Mutations in V-ATPase proton pump implicated in epilepsy syndrome

Why and how disrupting V-ATPase function leads to epilepsy, researchers are just starting to figure Read more

Tracing the start of COVID-19 in GA

At a time when COVID-19 appears to be receding in much of Georgia, it’s worth revisiting the start of the pandemic in early 2020. Emory virologist Anne Piantadosi and colleagues have a paper in Viral Evolution on the earliest SARS-CoV-2 genetic sequences detected in Georgia. Analyzing relationships between those virus sequences and samples from other states and countries can give us an idea about where the first COVID-19 infections in Georgia came from. We can draw Read more

Department of Pathology and Laboratory Medicine

Fecal transplant replants microbial garden

When facing a life-threatening infection, the “yuck factor” is a minor concern. Fecal microbiota transplant (FMT for short) has become an accepted treatment for recurrent Clostridium difficile infection, which can cause severe diarrhea and intestinal inflammation.

In a new video, Emory physicians Colleen Kraft and Tanvi Dhere explain how FMT restores microbial balance when someone’s internal garden has been disrupted.

C. difficile or “C diff” is a hardy bacterium that can barge into the intestines after another infection has been treated with antibiotics, when competition for real estate is low. In the last few years, doctors around the world have shown that FMT can resolve recurrent C diff infection better than antibiotics alone.

At Emory, Kraft and Dhere have performed almost 300 FMTs and report a 95 percent success rate when treating recurrent C diff. They have established a standard slate of stool donors, whose health is carefully screened.

Building on their experience with the procedure, Kraft and Dhere are studying whether FMT can head off other antibiotic-resistant infections besides C diff in kidney transplant patients. They have teamed up with infectious disease specialists Aneesh Mehta and Rachel Friedman-Moraco to conduct this study. Read more

Posted on by Quinn Eastman in Uncategorized Leave a comment

Parkinson’s disease: hold the AMPs

Pathologist Keqiang Ye and colleagues recently published a paper in PNAS that may have implications for Parkinson’s disease pathology and treatment strategies.

The protein alpha-synuclein is a bad actor in PD (nice explainer from Michael J. Fox Foundation); it’s a major constituent of Lewy bodies, the protein clumps that appear in PD patients’ brains, and there is a genetic link too. Alpha-synuclein seems to bring other proteins into the clumps, which may disrupt neuron function.

In particular, it sequesters PIKE-L, an inhibitor of AMP kinase, leading to AMP kinase hyperactivation and cell death. AMP kinase is a metabolic regulator activated by metformin, a common treatment for diabetes. So activating AMP kinase in some situations can be good for your body; however for the neurons affected by alpha-synuclein, activating it too much is bad.

Posted on by Quinn Eastman in Neuro Leave a comment

Lampreys and the reverse spy problem

Call it the reverse spy problem. If you were a spy who wanted to gain access to a top secret weapons factory, your task would be to fit in. The details of your employee badge, for example, should look just right.

As described in this 2016 JCI Insight paper, Emory and University of Toronto investigators wanted to do the opposite. They were aiming to develop antibody tools for studying and manipulating plasma cells, which are the immune system’s weapons factories, where antibody production takes place. The situation is flipped when we’re talking about antibodies. Here, the goal is to stand out.

Do these guys look like good spies?

Monoclonal antibodies are classic biomedical tools (and important anticancer drugs). But it’s tricky to develop antibodies against the places where antibodies themselves are made, because of the way the immune system develops. To guard against autoimmune disease, antibodies that would react against substances in the body are often edited out.

To get around this obstacle, researchers used organisms that have very different immune systems from humans: lampreys. Emory’s Max Cooper and colleagues had already shown how lampreys have molecules — variable lymphocyte receptors or VLRs — that function like antibodies, but don’t look like them, in terms of their molecular structure.

From the paper:

We reasoned that the unique protein architecture of VLR Abs and the great evolutionary distance between lampreys and humans would allow the production of novel VLRB Abs against biomedically relevant antigens against which conventional Abs are not readily produced because of structural or tolerogenic constraints.

Senior author Goetz Ehrhardt, now at University of Toronto, used to be in Cooper’s lab, and their two labs worked together on the JCI Insight paper. Read more

Posted on by Quinn Eastman in Immunology Leave a comment

SIV remission follow-up

The surprising finding that an antibody treatment can push SIV-infected monkeys into prolonged remission, even after antiviral drugs are stopped, continues to rumble across the internet.

siv-a4b7-teaser-copy

Blue circles show how viral levels stayed low even after antiretroviral drugs were stopped.

The Science paper was featured on NIH director Francis Collins’ blog this week. NIAID director Anthony Fauci has been giving presentations on the research, which emerged from a collaboration from his lab and Tab Ansari’s at Emory. Fauci’s talk at the recent HIV prevention meeting in Chicago is viewable here.

At Lab Land, we were pleased to see that the watchdogs at Treatment Action Group had this to say:

“Media coverage of the paper has generally been accurate, but has had to wrestle with the uncertainty that exists among scientists regarding how ART-free control of viral load should be described.”

HIV pioneer Robert Gallo noted in an article accompanying the Science paper that the anti-integrin antibody treatment represents an emerging alternative to the vaunted “shock and kill” strategy, which he termed “soothe and snooze.” Note to reporters: the upcoming “Strategies for an HIV cure” conference at NIH in mid-November might be a good chance to compare the different strategies and put them in perspective.

Read more

Posted on by Quinn Eastman in Immunology Leave a comment

Background links on SIV remission Science paper

This was the first consistent demonstration of post-treatment immune control in monkeys infected with SIV, without previous vaccination. Long-term post-treatment control of HIV has been reported in only a handful of people treated soon after infection. To learn more, check out these links.

Transient SIVmac remission induced by TLR7 agonist, reported at 2016 CROI conference

Immune control of SIVagm, no antiretroviral drugs necessary. Model of “elite controllers.”

Immune clearance of SIVmac; prior CMV-based vaccination necessary.

Post-treatment control of HIV – VISCONTI study. Roundup of HIV remission cases, from Treatment Action Group. Read more

Posted on by Quinn Eastman in Immunology Leave a comment

Measuring microbiome disruption

How should doctors measure how messed up someone’s intestinal microbiome is?

This is the topic of a recent paper in American Journal of Infection Control from Colleen Kraft and colleagues from Emory and the Centers for Disease Control and Prevention. The corresponding author is epidemiologist Alison Laufer Halpin at the CDC.

A “microbiome disruption index” could inform decisions on antibiotic stewardship, where a patient should be treated or interventions such as fecal microbial transplant (link to 2014 Emory Medicine article) or oral probiotic capsules.

What the authors are moving towards is similar to Shannon’s index, which ecologists use to measure diversity of species. Another way to think about it is like the Gini coefficient, a measure of economic inequality in a country. If there are many kinds of bacteria living in someone’s body, the disruption index should be low. If there is just one dominant type of bacteria, the disruption index should be high.

In the paper, the authors examined samples from eight patients in a long-term acute care hospital (Wesley Woods) who had recently developed diarrhea. Using DNA sequencing, they determined what types of bacteria were present in patients’ stool. The patients’ samples were compared with those from two fecal microbial transplant donors. Read more

Posted on by Quinn Eastman in Immunology, Uncategorized Leave a comment

Wound-healing intestinal bacteria: like shrubs after a forest fire

In injured mouse intestines, specific types of bacteria step forward to promote healing, Emory scientists have found. One oxygen-shy type of bacteria that grows in the wound-healing environment, Akkermansia muciniphila, has already attracted attention for its relative scarcity in both animal and human obesity.

NMicro

An intestinal wound brings bacteria (red) into contact with epithelial cells (green). The bacteria can provide signals that promote healing, if they are the right kind.

The findings emphasize how the intestinal microbiome changes locally in response to injury and even helps repair breaches. The researchers suggest that some of these microbes could be exploited as treatments for conditions such as inflammatory bowel disease.

The results were published on January 27 in Nature Microbiology. Researchers took samples of DNA from the colon tissue of mice after they underwent colon biopsies. They used DNA sequencing to determine what types of bacteria were present.

“This is a situation resembling recovery after a forest fire,” says Andrew Neish, MD, professor of pathology and laboratory medicine at Emory University School of Medicine. “Once the trees are gone, there is an orderly succession of grasses and shrubs, before the reconstitution of the mature forest. Similarly, in the damaged gut, we see that certain kinds of bacteria bloom, contribute to wound healing, and then later dissipate as the wound repairs.” Read more

Posted on by Quinn Eastman in Immunology, Uncategorized Leave a comment

Galectins defend against bacterial wolves in sheeps’ clothing

To prevent auto-immune attack, our bodies avoid making antibodies against molecules found on our own cells. That leaves gaps in our immune defenses bacteria could exploit. Some of those gaps are filled by galectins, a family of proteins whose anti-bacterial properties were identified by Emory scientists.

In the accompanying video, Sean Stowell, MD, PhD and colleagues explain how galectins can be compared to sheep dogs, which are vigilant in protecting our cells (sheep) against bacteria that may try to disguise themselves (wolves).

The video was produced to showcase the breadth of research being conducted within Emory’s Antibiotic Resistance Center. Because of their ability to selectively target some kinds of bacteria, galectins could potentially be used as antibiotics to treat infections without wiping out all the bacteria in the body. Read more

Posted on by Quinn Eastman in Immunology Leave a comment

‘Mountain of data’ on flu vaccine responses

Bali Pulendran’s lab at Emory Vaccine Center teamed up with UCSD researchers and recently published a huge analysis of immune responses after seasonal flu vaccination (Immunity is making it available free this week, no subscription needed). Hundreds of volunteers at the Vaccine Center’s Hope Clinic took part in this study.

Note — this study looked at antibody responses to flu vaccines, but didn’t assess protection: whether study participants actually became sick with flu or not.

Our write-up is here. Immunity’s preview, from the Karolinska Institute’s Petter Brodin, is here, Cell Press’s press release is here.

Three points we wanted to call attention to:

*Long-lasting antibodies A surprising finding was how the “molecular signatures” that predict the strength of the immune response a few weeks after vaccination did not predict how long anti-flu antibodies stayed around. Instead, a separate set of signatures predicted the durability of antibody levels.

These distinct signatures may be connected with how plasma cells, responsible for antibody production, need to find homes in the bone marrow. That sounds like the process highlighted by Eun-Hyung Lee and colleagues in an Immunity paper published in July. In bone marrow samples from middle-aged volunteers, her team had found antibody-secreting cells that survive from childhood infections.

*Interfering (?) activation of NK cells/monocytes in elderly While the researchers found people older than 65 tended to have weaker antibody responses to vaccination, there were common elements of molecular signatures that predicted strong antibody responses in younger and older volunteers. However, elderly volunteers tended to have stronger signatures from immune cells that are not directly involved in producing antibodies (monocytes and ‘natural killer’ cells), both at baseline and after vaccination.

From the discussion: “This indicates a potential connection between the baseline state of the immune system in the elderly and reduced responsiveness to vaccination.” Additional comments on this from Shane Crotty in Brad Fikes’ article for the Union Tribune.

*The mountain of data from this and similar studies is available for use by other researchers on the web site ImmPort.

Posted on by Quinn Eastman in Immunology Leave a comment

The secrets of a new Alzheimer’s secretase

The title of Keqiang Ye’s recent Nature Communications paper contains a provocative name for an enzyme: delta-secretase.

Just from its name, one can tell that a secretase is involved in secreting something. In this case, that something is beta-amyloid, the toxic protein fragment that tends to accumulate in the brains of people with Alzheimer’s disease.

Aficionados of Alzheimer’s research may be familiar with other secretases. Gamma-secretase was the target of some once-promising drugs that failed in clinical trials, partly because they also inhibit Notch signaling, important for development and differentiation in several tissues. Now beta-secretase inhibitors are entering Alzheimer’s clinical trials, with similar concerns about side effects.

Many Alzheimer’s researchers have studied gamma- and beta-secretases, but a review of the literature reveals that so far, only Ye and his colleagues have used the term delta-secretase.

This enzyme previously was called AEP, for asparagine endopeptidase. AEP appears to increase activity in the brain with aging and cleaves APP (amyloid precursor protein) in a way that makes it easier for the real bad guy, beta-secretase, to produce bad beta-amyloid.*At Alzforum, Jessica Shugart describes the enzyme this way:

Like a doting mother, AEP cuts APP into bite-sized portions for toddler BACE1 [beta-secretase] to chew on, facilitating an increase in beta-amyloid production. Read more

Posted on by Quinn Eastman in Neuro Leave a comment