Precision medicine with multiple myeloma

“Precision medicine” is an anti-cancer treatment strategy in which doctors use genetic or other tests to identify vulnerabilities in an individual’s cancer subtype. Winship Cancer Institute researchers have been figuring out how to apply this strategy to multiple myeloma, with respect to one promising drug called venetoclax, in a way that can benefit the most patients. Known commercially as Venclexta, venetoclax is already FDA-approved for some forms of leukemia and lymphoma. Researchers had observed that multiple Read more

Promiscuous protein droplets regulate immune gene activity

Biochemists at Emory are achieving insights into how an important regulator of the immune system switches its function, based on its orientation and local environment. New research demonstrates that the glucocorticoid receptor (or GR) forms droplets or “condensates” that change form, depending on its available partners. The inside of a cell is like a crowded nightclub or party, with enzymes and other proteins searching out prospective partners. The GR is particularly well-connected and promiscuous, and Read more

Neutrophils flood lungs in severe COVID-19

In the lungs of severe COVID-19 patients, neutrophils camp out and release inflammatory cytokines and tissue-damaging Read more

clotting factor

A milestone in treating hemophilia

Hematologist Pete Lollar has devoted his career to developing treatments for hemophilia A, which is caused by a lack of blood clotting factor VIII. Lollar is a professor of pediatrics in Emory School of Medicine and director of hemostasis research at Children’s Healthcare of Atlanta. Last week, Lollar was honored by Emory’s Office of Technology Transfer for setting in motion research that has progressed to a phase III clinical trial of a new product, OBI-1, a special form of factor VIII.

John "Pete" Lollar, MD

Along with this milestone came a dramatic story, described by OTT’s assistant director Cale Lennon. The first patient to enroll in the clinical trial did so in November 2010 because of what appeared to be acquired hemophilia, which led to severe uncontrolled hemorrhaging. As a result of treatment with OBI-1, developed by Lollar and his research team at Emory, the patient’s bleeding was brought under control and it saved his life. He was treated at Indiana Hemophilia and Thrombosis Center in Indianapolis.

Acquired hemophilia is a challenge for doctors to deal with because it is such a surprise. Unlike people with inherited hemophilia, those with acquired hemophilia do not have a personal or family history of bleeding episodes. Their immune systems are somehow provoked into making antibodies against their own clotting factor VIII. These antibodies also appear over time in about 30 percent of patients with inherited hemophilia who take standard clotting factors.

OBI-1, a special form of clotting factor VIII, is less of a red flag to the immune system. This allows treatment of patients who cannot benefit from standard clotting factor VIII, because of the presence of auto-antibodies.

Emory originally licensed OBI-1 to Octagen Corporation, a “homegrown” startup company founded in 1997. Octagen sublicensed the OBI-1 technology to a French biotechnology firm, Ipsen Biopharm in 1998. Over the next decade, Octagen and Ipsen pursued preclinical and initial clinical studies and completed a phase II clinical trial in 2006. Ipsen purchased the OBI-1 program outright in May 2008.

In January 2010, Ipsen developed a partnership agreement with Inspiration Biopharmaceuticals, which was founded by two businessmen whose children have hemophilia. Under the agreement’s terms, Inspiration licensed OBI-1 from Ipsen and is responsible for its clinical development, regulatory approval and commercialization.

Posted on by Quinn Eastman in Uncategorized Leave a comment