Brain organoid model shows molecular signs of Alzheimer’s before birth

In a model of human fetal brain development, Emory researchers can see perturbations of epigenetic markers in cells derived from people with familial early-onset Alzheimer’s disease, which takes decades to appear. This suggests that in people who inherit mutations linked to early-onset Alzheimer’s, it would be possible to detect molecular changes in their brains before birth. The results were published in the journal Cell Reports. “The beauty of using organoids is that they allow us to Read more

The earliest spot for Alzheimer's blues

How the most common genetic risk factor in AD interacts with the earliest site of neurodegeneration Read more

Make ‘em fight: redirecting neutrophils in CF

Why do people with cystic fibrosis (CF) have such trouble with lung infections? The conventional view is that people with CF are at greater risk for lung infections because thick, sticky mucus builds up in their lungs, allowing bacteria to thrive. CF is caused by a mutation that affects the composition of the mucus. Rabindra Tirouvanziam, an immunologist at Emory, says a better question is: what type of cell is supposed to be fighting the Read more

Asma Nusrat

Providing the potent part of probiotics

A Emory News item on a helpful part of the microbiome focuses on how the same type of bacteria – lactobacilli – activates the same ancient signaling pathway in intestinal cells in both insects and mammals. It continues a line of research from Rheinallt Jones and Andrew Neish on how beneficial bacteria stimulate wound healing by activating ROS (reactive oxygen species).

Asma Nusrat, MD

A idea behind this research is: if we know what parts of the bacteria stimulate healing, perhaps doctors can deliver that material, or something very close, to patients directly to treat intestinal diseases such as Crohn’s or ulcerative colitis.

This idea has advanced experimentally, as demonstrated by two papers from Jones and Neish’s frequent collaborator, Asma Nusrat, who recently moved from Emory to the University of Michigan. This team had shown that a protein produced by human intestinal cells called annexin A1 activates ROS, acting through the same N-formyl peptide receptors that bacteria do.

Nusrat told me Friday her team began investigating annexins a decade ago at Emory, and it was fortuitous that Neish was working on beneficial bacteria right down the hall, since it is now apparent that annexin A1 and the bacteria are activating the same molecular signals. (Did you know there is an entire conference devoted to annexins? I didn’t until a few days ago.)

In a second Journal of Clinical Investigation paper published this February, Nusrat and her colleagues show that intestinal cells release vesicles containing annexin A1 following injury. The wound closure-promoting effects of these vesicles can be mimicked with nanoparticles containing annexin A1. The nanoparticles incorporate a form of collagen, which targets them to injured intestinal tissue. Read more

Posted on by Quinn Eastman in Immunology, Uncategorized Leave a comment

Regenerative Engineering & Medicine highlights

Last week on Friday, Lab Land attended the annual Regenerative Engineering & Medicine center get-together to hear about progress in this exciting area.

During his talk, Tony Kim of Georgia Tech mentioned a topic that Rose Eveleth recently explored in The Atlantic: why aren’t doctors using amazing “nanorobots” yet? Or as Kim put it, citing a recent review, “So many papers and so few drugs.”

[A summary: scaling up is difficult, testing pharmacokinetics, toxicity and efficacy is difficult, and so is satisfying the FDA.]

The talks Friday emerged from REM seed grants; many paired an Emory medical researcher with a Georgia Tech biomedical engineer. All of these projects take on challenges in delivering regenerative therapies: getting cells or engineered particles to the right place in the body.

For example, cardiologist W. Robert Taylor discussed the hurdles his team had encountered in scaling up his cells-in-capsules therapies for cardiovascular diseases to pigs, in collaboration with Luke Brewster. The pre-pig phase of this research is discussed in more detail here and here. Read more

Posted on by Quinn Eastman in Heart, Neuro Leave a comment