Precision medicine with multiple myeloma

“Precision medicine” is an anti-cancer treatment strategy in which doctors use genetic or other tests to identify vulnerabilities in an individual’s cancer subtype. Winship Cancer Institute researchers have been figuring out how to apply this strategy to multiple myeloma, with respect to one promising drug called venetoclax, in a way that can benefit the most patients. Known commercially as Venclexta, venetoclax is already FDA-approved for some forms of leukemia and lymphoma. Researchers had observed that multiple Read more

Promiscuous protein droplets regulate immune gene activity

Biochemists at Emory are achieving insights into how an important regulator of the immune system switches its function, based on its orientation and local environment. New research demonstrates that the glucocorticoid receptor (or GR) forms droplets or “condensates” that change form, depending on its available partners. The inside of a cell is like a crowded nightclub or party, with enzymes and other proteins searching out prospective partners. The GR is particularly well-connected and promiscuous, and Read more

Neutrophils flood lungs in severe COVID-19

In the lungs of severe COVID-19 patients, neutrophils camp out and release inflammatory cytokines and tissue-damaging Read more

Ashesh Jani

Seeing the value: prostate cancer imaging agent developed at Winship

A study from Winship Cancer Institute of Emory University has the potential to change how patients whose prostate cancer recurs after prostatectomy are treated. The study was featured in both the plenary session and press program of the American Society for Radiation Oncology (ASTRO) Annual Meeting on Monday, October 26.

The Emory Molecular Prostate Imaging for Radiotherapy Enhancement, or EMPIRE-1 trial (NCT01666808), is the first randomized trial of men with prostate cancer with recurring cancer to show that treatment based on advanced molecular imaging can improve disease-free survival rates. The molecular imaging used in the study, the radiotracer fluciclovine (18F) PET, was invented and developed at Emory and Winship.

The phase II/III trial was led by Winship radiation oncologist and prostate cancer specialist Ashesh B. Jani, MD, MSEE, FASTRO, and Winship nuclear radiology specialist David M. Schuster, MD, FACR. The trial enrolled 165 patients whose cancer recurred after having undergone prostatectomies. One group received radiation therapy based on conventional imaging. The other group received treatment that was finalized based on imaging with the fluciclovine PET radiotracer. Those whose treatment was adjusted according to the results of the advanced molecular imaging showed an improvement in the cancer control end point.

“At three years, the group getting treatment guided by PET fluciclovine had a 12 percent better cancer control rate, and this persisted at four years as well, with a 24% improvement,” says Jani. “We think the improvement was seen because the novel PET allowed for better selection of patients for radiation, better treatment decisions, and better radiation target design.”

Fluciclovine PET imaging has been getting some attention in the urology/prostate cancer world.

More details here.

Posted on by Quinn Eastman in Cancer Leave a comment