Warren symposium follows legacy of geneticist giant

If we want to understand how the brain creates memories, and how genetic disorders distort the brain’s machinery, then the fragile X gene is an ideal place to start. That’s why the Stephen T. Warren Memorial Symposium, taking place November 28-29 at Emory, will be a significant event for those interested in neuroscience and genetics. Stephen T. Warren, 1953-2021 Warren, the founding chair of Emory’s Department of Human Genetics, led an international team that discovered Read more

Mutations in V-ATPase proton pump implicated in epilepsy syndrome

Why and how disrupting V-ATPase function leads to epilepsy, researchers are just starting to figure Read more

Tracing the start of COVID-19 in GA

At a time when COVID-19 appears to be receding in much of Georgia, it’s worth revisiting the start of the pandemic in early 2020. Emory virologist Anne Piantadosi and colleagues have a paper in Viral Evolution on the earliest SARS-CoV-2 genetic sequences detected in Georgia. Analyzing relationships between those virus sequences and samples from other states and countries can give us an idea about where the first COVID-19 infections in Georgia came from. We can draw Read more

Alzheimer’s

Worm collaboration w/Oglethorpe probes neurodegeneration

Emory cell biologist David Katz’s lab has facilitated a collaboration with our neighbors at Oglethorpe University, working with undergraduates on the worm C. elegans and contributing to Alzheimer’s/frontotemporal dementia research. A new article from Oglethorpe describes how C. elegans is ideal for undergraduate biology instruction. Check it out.  

In the photo: Oglethorpe student and Katz lab intern Caitlin May, Oglethorpe biology professor Karen Schmeichel, Elias Castro — also an Oglethorpe student and Katz lab intern, Katz lab postdoc Teresa Lee and David Katz.

Posted on by Quinn Eastman in Neuro Leave a comment

Nerve gas, angel dust and genetic epilepsy

Last week, Lab Land noticed similarities between two independent lines of research from the Escayg and Traynelis/Yuan labs at Emory. Both were published recently and deal with rare forms of genetic epilepsy, in which molecular understanding of the cause leads to individualized treatment, albeit with limited benefit.

Both conditions are linked to an excess of neuronal excitation, and both can be addressed using medications that have also been tested for Alzheimer’s. A critical difference is that memantine is FDA-approved for Alzheimer’s, but huperzine A is not.

What condition? Dravet syndrome/GEFS+ Epilepsy-aphasia syndrome
What gene is mutated? SCN1A – sodium ion channel GRIN2A – NMDA receptor subunit
What is the beneficial drug? Huperzine A Memantine
How does the drug work? Acetylcholinesterase inhibitor NMDA receptor antagonist
Other drugs that use the same mechanism Alzheimer’s medications such as donepezil

Irreversible + stronger: insecticides, nerve gas

Ketamine, phencyclidine (aka PCP)
Posted on by Quinn Eastman in Neuro Leave a comment

Are TrkB agonists ready for translation into the clinic?

Our recent news item on Emory pathologist Keqiang Ye’s obesity-related research (Molecule from trees helps female mice only resist weight gain) understates how many disease models the proto-drug he and his colleagues have discovered, 7,8-dihydroxyflavone, can be beneficial in. We do mention that Ye’s partners in Australia and Shanghai are applying to begin phase I clinical trials with a close relative of 7,8-dihydroxyflavone in neurodegenerative diseases.

Ye’s 2010 PNAS paper covered models of Parkinson’s, stroke and seizure. Later publications take on animal models of depression, Alzheimer’s, fear learning, hearing loss and peripheral nerve injury. Although those findings begin to sound too good to be true, outside laboratories have been confirming the results (not 100 percent positive, but nothing’s perfect).  Plenty of drugs don’t make it from animal models into the clinic, but this is a solid body of work so far.

 

 

 

Posted on by Quinn Eastman in Neuro Leave a comment

A crystal ball for Lab Land: Top 5 topics in 2015

Alzheimer’s protein pathology

While a wise Dane once proposed that predictions are dangerous, especially concerning the future, it’s usually helpful to plan ahead. Here are five biomedical research topics we think will occupy our attention in 2015.

1. Alzheimer’s We’re hearing discordant music coming from Alzheimer’s researchers. Large pharmaceutical companies are shutting down clinical trials in frustration, but researchers keep coming forward with biomarkers that might predict future disease. This confusing situation calls for some new thinking. Allan Levey, Jim Lah and colleagues have been preparing the way for a “beyond the usual suspects” look at Alzheimer’s disease. We are looking forward to Levey’s appearance at the 2015 AAAS meeting and to drug discovery wizard Keqiang Ye’s continuing work on new therapeutic targets.

2. Ebola While the scare over Ebola in the United States may be over (we hope so!), the outbreak continues to devastate countries in West Africa. Clinical trials testing vaccines and experimental drugs are underway or will be soon. Read more

Posted on by Quinn Eastman in Uncategorized Leave a comment

Alzheimer’s drug discovery: looking under the right ROCK

Developing drugs that can change the progression of Alzheimer’s disease is a huge challenge. In the last few years, more than one pharmaceutical firm have abandoned clinical programs in Alzheimer’s that once looked promising. Still, Emory and Scripps scientists have found an approach that deserves a second look and more investigation.

One straightforward drug strategy against Alzheimer’s is to turn down the brain’s production of beta-amyloid, the key component of the disease’s characteristic plaques. A toxic fragment of a protein found in healthy brains, beta-amyloid accumulates in the brains of people affected by the disease.

The enzyme that determines how much beta-amyloid brain cells generate is called BACE (beta-secretase or beta-site APP cleaving enzyme). Yet finding drugs that inhibit that elusive enzyme has been far from straightforward.

Now researchers  have identified a way to shut down production of beta-amyloid by diverting BACE to a different part of the cell and inhibiting its activity. The results were published this week in Journal of Neuroscience. Read more

Posted on by Quinn Eastman in Neuro Leave a comment