Warren symposium follows legacy of geneticist giant

If we want to understand how the brain creates memories, and how genetic disorders distort the brain’s machinery, then the fragile X gene is an ideal place to start. That’s why the Stephen T. Warren Memorial Symposium, taking place November 28-29 at Emory, will be a significant event for those interested in neuroscience and genetics. Stephen T. Warren, 1953-2021 Warren, the founding chair of Emory’s Department of Human Genetics, led an international team that discovered Read more

Mutations in V-ATPase proton pump implicated in epilepsy syndrome

Why and how disrupting V-ATPase function leads to epilepsy, researchers are just starting to figure Read more

Tracing the start of COVID-19 in GA

At a time when COVID-19 appears to be receding in much of Georgia, it’s worth revisiting the start of the pandemic in early 2020. Emory virologist Anne Piantadosi and colleagues have a paper in Viral Evolution on the earliest SARS-CoV-2 genetic sequences detected in Georgia. Analyzing relationships between those virus sequences and samples from other states and countries can give us an idea about where the first COVID-19 infections in Georgia came from. We can draw Read more

Heart

Spider fibers in smooth muscle cells

This image submitted by Thalita Abrahao won second place at the Postdoctoral Research Symposium Thursday. Abrahao, a postdoc in Kathy Griendling’s lab, is studying vesicle trafficking in vascular smooth muscle cells.

Thalita Abrahao -- Kathy Griendling lab

Thalita Abrahao — Kathy Griendling lab

Griendling’s lab has been looking into how the enzyme Nox4 and its partner Poldip2 are involved in cell migration, and Abrahao was investigating if vascular smooth muscle cells that have less Poldip2 have changes in protein processing.

Here, green represents beta-tubulin, a protein making up fine-looking fibers (microtubules) extending through the cell. Purple represents Sec23, part of the process of vesicle trafficking and protein secretion. White indicates when beta-tubulin and Sec23 are both present. Orange marks DNA in the nucleus.

Posted on by Quinn Eastman in Heart Leave a comment

Really? I had a heart attack?

A recent Harvard study, published in Circulation, found a surprising level of inconsistency between what medical records say about whether people had a heart attack and what they report themselves in surveys.

About a quarter of Medicare patients who said in a survey that they previously had a heart attack have no record of having any heart-related hospital admission. Conversely, about one-third of patients who, according to Medicare, experienced a heart attack said they hadn’t.

This finding is consistent with an Emory study from cardiologists Neal Dickert and Habib Samady, in which participants in a clinical trial were interviewed just a couple days after the initial procedure. The trial was testing a “post-conditioning” modification of angioplasty+stenting performed during treatment for a heart attack. Just over half (55 percent) of the participants initially remembered being asked to participate when asked. Read more

Posted on by Quinn Eastman in Heart Leave a comment

Education is a life preserver, after heart attack

For the last decade, cardiology researchers have been collecting detailed information on the patients who come through Emory’s catheterization labs. The density of data (close to 7000 people) can make it possible to achieve some insights about mortality in American society.

Cardiology research fellow Salim Hayek, MD, presented some provocative findings yesterday in a poster competition at the American College of Physicians meeting in Boston. He has been working with Arshed Quyyumi, MD and colleagues at Emory’s Clinical Cardiovascular Research Institute.

Their analysis shows “college education as a discrete indicator of socioeconomic status was an independent predictor of survival.”

A key thing to remember when looking at this data is that most of the people in the cath lab at a given moment are not actually having a heart attack — just 13 percent are. (Abstract/poster available upon request). However, there’s enough suspicion or history of heart disease for doctors to take a look inside; most of them have hypertension and coronary artery disease, and many have had a heart attack in the past. The group is mostly men, average age 63. Read more

Posted on by Quinn Eastman in Heart Leave a comment

Honokiol, Jack of all trades

Emory dermatologist Jack Arbiser discovered the anti-angiogenic properties of honokiol, a compound derived from magnolia cones, more than a decade ago. Since then, honokiol has been found to have anti-inflammatory, anti-oxidant and anticancer properties.

A paper published Tuesday in Nature Communications from researchers at the University of Chicago shows that honokiol inhibits the mitochondrial enzyme Sirt3, which has connections to longevity. Manesh Gupta and colleagues demonstrate that honokiol can block cardiac hypertrophy in mice, a finding with possible relevance for the treatment of heart failure.

Sirt3 has been linked both genetically to human life span, and until now, the only way to increase levels of Sirt3 was old-fashioned calorie restriction and/or endurance exercise.

The authors write: It is believed that Sirt3 does not play a role in embryonic development, but rather it fine tunes the activity of mitochondrial substrates by lysine deacetylation to protect cells from stress… To the best of our knowledge, this is the first report describing a pharmacological activator of Sirt3.

 

Posted on by Quinn Eastman in Cancer, Heart Leave a comment

Leslee Shaw explains coronary artery calcium scoring

On Thursday, cardiology researcher Leslee Shaw, PhD joined an exclusive club at Emory with her 2015 Dean’s Distinguished Faculty Lecture and Award.* Shaw is the co-director of Emory’s Clinical Cardiovascular Research Institute and research director of Emory Women’s Heart Center. Her lecture focused on the utility of coronary artery calcium (CAC) scoring in predicting cardiovascular disease.

Much cardiovascular risk research has focused on finding imaging or biomarker tests that can provide doctors with cost-effective decision-making power. One prominent question: should the patient take cholesterol-reducing statins? These tests should provide information above and beyond the Framingham Risk Score or its ACC/AHA update, which incorporates information about a patient’s age, sex, cholesterol/HDL, blood pressure and diabetes status.

CAC scoring is a good place to start, Shaw said, since it is a standardized, relatively inexpensive test that measures the buildup of calcium in atherosclerotic plaque, and the radiation dose is low compared with other cardiac imaging techniques. Read more

Posted on by Quinn Eastman in Heart Leave a comment

ACC 2015: Newer heart risk calculator may better accounts for racial differences

A risk calculator for cardiovascular disease, developed as a companion for the 2013 American College of Cardiology/American Heart Association cholesterol guidelines, may account for racial differences in sub-clinical vascular function better than the Framingham Risk Score, Emory cardiology researchers say.

Their findings are scheduled for presentation Monday at the American College of Cardiology meeting in San Diego.

African Americans, especially men, tend to have a higher prevalence of cardiovascular disease, but this differences are not reflected in the Framingham Risk score. Arterial stiffness is a sign of heart disease risk that tends to appear more prominently among African Americans than whites. Cardiovascular research fellow Jia Shen, MD, MPH, and Emory colleagues analyzed data on arterial stiffness and structure from 1235 people – 777 whites and 458 African-Americans — enrolled in two large studies (Center for Health Discovery and Well Being and META-Health). Read more

Posted on by Quinn Eastman in Heart Leave a comment

Who regulates the regulators? Drosha

MicroRNAs have emerged as important master regulators in cells, since each one can shut down several target genes. Riding on top of the master regulators is Drosha, the RNA-cutting enzyme that initiates microRNA processing in the nucleus. Drosha and its relative Dicer have been attracting attention in cancer biology, because they are thought to be behind a phenomenon where cancerous cells can “infect” their healthy neighbors via tiny membrane-clothed packets called exosomes.

At Emory, pharmacologist Zixu Mao and colleagues recently published in Molecular Cell their findings that Drosha is regulated by stress (experimentally: heat or peroxide) through p38 MAP kinase.

Although we mention relevance to cancer above, this is one of those basic cell biology findings that may have applicability to several areas of medicine. Alterations in miRNA processing have been linked to neurodegenerative disease (Fragile X-associated tremor/ataxia syndrome, for one example). MicroRNA-packed exosomes are also being studied by biomedical engineers as potential therapeutic tools in regenerative medicine, so knowing what cellular stress does to miRNA production could be useful. Read more

Posted on by Quinn Eastman in Cancer, Heart, Neuro Leave a comment

Extend that New Year’s energy – to what benefit?

Surveys indicate that many of us make New Year’s resolutions to eat more healthily or exercise more frequently, yet do not sustain the enthusiasm of January throughout the year.

What if the burst of energy and good intentions could be maintained over a longer period, perhaps with the help of a coach? What kinds of health benefits would appear?

Researchers from Emory and Georgia Tech recently published an analysis of the changes in the health profiles in 382 Center for Health Discovery & Well Being participants who completed a one-year evaluation.

The senior author is Greg Gibson, PhD, professor of biology and director of the Center for Integrative Genomics at Georgia Tech. Georgia Tech postdoctoral fellow Rubina Tabassum, now at the University of Helsinki, is the first author.

“What do most people in developed countries need to do? Eat better, exercise more regularly and stress less,” Gibson says. “It’s unclear whether most of the impact comes from the interaction with partners, or simply from participation and goal-setting, but the overall effect is quite good.”

The main points:

*These are “essentially healthy” people — healthier than the general population in the United States – but almost half started out with high blood pressure and cholesterol levels. There was no control group, and not everyone pursued the same exact program. The average age was 48 years and 28 percent of the group was considered obese. That’s less than the United States population as a whole.

*On average, the 382 participants lost a moderate amount of weight (it works out to about three pounds) and saw their blood pressure and LDL-cholesterol go down significantly over that first year (121 to 116 mmHG for systolic BP, 112 to 105 mg/dL for LDL-C). They also reported lower scores for depression and anxiety.

Read more

Posted on by Quinn Eastman in Heart Leave a comment

Stem cell/cardiology researcher Hee Cheol Cho joins Emory

Please welcome stem cell/cardiology researcher Hee Cheol Cho to Emory. Starting in September, Cho joined the Wallace H Counter Department of Biomedical Engineering at Georgia Tech and Emory, and Emory-Children’s Pediatric Research Center. He and his team will focus on developing gene-and cell-based therapies for cardiac arrhythmias. Their research will adding to and complement the research of several groups, such as those led by Chunhui Xu, Young-sup Yoon, Mike Davis and W. Robert Taylor.

Cho comes from Cedars-Sinai Medical Center in Los Angeles, where he specialized in understanding cardiac pacemaker cells, a small group of muscle cells in the sinoatrial node of the heart that initiate cardiac contraction. These cells have specialized electrophysiological properties, and much has been learned in the last few years about the genes that control their development.

Cho and colleagues from Cedars-Sinai recently published a paper in Stem Cell Reports describing how the gene SHOX2 can nudge embryonic stem cells into becoming cardiac pacemaker cells. Read more

Posted on by Quinn Eastman in Heart Leave a comment

The other “cho-” cardiovascular disease biomarker

Quick, what biomarker whose name starts with “cho-” is connected with cardiovascular disease? Very understandable if your first thought is “cholesterol.” Today I’d like to shift focus to a molecule with a similar name, but a very different structure: choline.

Choline, a common dietary lipid component and an essential nutrient, came to prominence in cardiology research in 2011 when researchers at the Cleveland Clinic found that choline and its relatives can contribute to cardiovascular disease in a way that depends upon intestinal bacteria. In the body, choline is part of two phospholipids that are abundant in cell membranes, and is also a precursor for the neurotransmitter acetylcholine. Some bacteria can turn choline (and also carnitine) into trimethylamine N-oxide (TMAO), high levels of which predict cardiovascular disease in humans. TMAO in turn seems to alter how inflammatory cells take up cholesterol and lipids.

Researchers at Emory arrived at choline metabolites and their connection to atherosclerosis by another route. Hanjoong Jo and his colleagues have been productively probing the mechanisms of atherosclerosis with an animal model. Very briefly: inducing disturbed blood flow in mice, in combination with a high fat diet, can result in atherosclerotic plaque formation within a few weeks. Jo’s team has used this model to examine changes in gene activation, microRNAs, DNA methylation, and now, metabolic markers.

Talking about this study at Emory’s Clinical Cardiovascular seminar on Friday, metabolomics specialist Dean Jones said he was surprised by the results, which were recently published by the American Journal of Physiology (to be precise, their ‘omics journal). The lead author is instructor Young-Mi Go. Read more

Posted on by Quinn Eastman in Heart Leave a comment