Transformative awards for Mocarski’s malleable cells, lung fibrosis

The National Institutes of Health has announced a five-year, $1.9 million Transformative Research Award to Emory virologist Edward Mocarski, PhD for his work on how the mechanisms of programmed cell death can be subverted.

Mocarski is Robert W. Woodruff professor of microbiology and immunology at Emory University School of Medicine and Emory Vaccine Center. His research, which originated in probing how cells commit suicide when taken over by viruses, could lead to advances in regenerative medicine and organ transplant.

Barker Mocarski

Thomas Barker, PhD (left) and Edward Mocarski, PhD (right)

The grant, funded through the National Institute of Allergy and Infectious Diseases, is one of nine “high-risk-, high-reward” Transformative Research Awards (13 recipients) announced by the NIH on October 6.

In the same group this year, Thomas Barker in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University received a Transformative Research Award for his research on mechanosensors + pulmonary fibrosis.

The Transformative Research Award program supports “exceptionally innovative, unconventional, paradigm-shifting research projects that are inherently risky and untested.” Emory has achieved only one other TRA since the program was established in 2009: Shuming Nie’s project on imaging to guide cancer surgery.

“This Transformative award was made possible because of the creative and engaged graduate students and postdoctoral fellows I have had working with me at Emory,” Mocarski says.

In 2011, Mocarski, working with former graduate student William Kaiser and Emory geneticist Tamara Caspary showed that two complementary forms of programmed cell death, necrosis and apoptosis, can be genetically excised from mice, leaving a viable animal with a functioning immune system.

These findings are yielding additional fruit. Mocarski’s research indicates that cells from these genetically altered mice are unexpectedly malleable, in that they are easier to reprogram into induced pluripotent stem cells. Once reprogrammed, induced pluripotent stem cells (iPS cells) can be directed to become cells of almost any tissue, making them promising potential tools for the treatment of many diseases.

The genetically altered mice are also less susceptible to deadly inflammation and more readily accept bone marrow transplants. The Transformative project’s aims are to exploit these findings and test the ability of drugs that interfere with programmed cell death to facilitate tissue regeneration, iPS cell reprogramming and transplant.

 

 

 

Be Sociable, Share!

Posted on by Quinn Eastman in Immunology Leave a comment

About the author

Quinn Eastman

Science Writer, Research Communications
qeastma@emory.edu
404-727-7829 Office

Add a Comment