Warren symposium follows legacy of geneticist giant

If we want to understand how the brain creates memories, and how genetic disorders distort the brain’s machinery, then the fragile X gene is an ideal place to start. That’s why the Stephen T. Warren Memorial Symposium, taking place November 28-29 at Emory, will be a significant event for those interested in neuroscience and genetics. Stephen T. Warren, 1953-2021 Warren, the founding chair of Emory’s Department of Human Genetics, led an international team that discovered Read more

Mutations in V-ATPase proton pump implicated in epilepsy syndrome

Why and how disrupting V-ATPase function leads to epilepsy, researchers are just starting to figure Read more

Tracing the start of COVID-19 in GA

At a time when COVID-19 appears to be receding in much of Georgia, it’s worth revisiting the start of the pandemic in early 2020. Emory virologist Anne Piantadosi and colleagues have a paper in Viral Evolution on the earliest SARS-CoV-2 genetic sequences detected in Georgia. Analyzing relationships between those virus sequences and samples from other states and countries can give us an idea about where the first COVID-19 infections in Georgia came from. We can draw Read more

Yerkes National Primate Research Center

Zika virus blindfolds immune alarm cells

Important immune alarm cells — dendritic cells — are fighting Zika virus with an arm tied behind their backs, scientists from Emory Vaccine Center report.

Dendritic cells are “sentinel” cells that alert the rest of the immune system when they detect viral infection. When Zika virus infects them, it shuts down interferon signaling, one route for mustering the antiviral troops. However, another antiviral pathway called RIG-I-like receptor (RLR) signaling is left intact and could be a target for immunity-boosting therapies, the researchers say.

Mehul Suthar, PhD in the lab with graduate students Kendra Quicke and James Bowen

The findings were published on Feb. 2 in PLOS Pathogens.

Zika was known to disrupt interferon signaling, but Emory researchers have observed that it does so in ways that are distinct from other related flaviviruses, such as Dengue virus and West Nile virus. The findings give additional insight into how Zika virus is able to counter human immune defenses. Read more

Posted on by Quinn Eastman in Immunology Leave a comment

Access to HIV’s hideouts: T cells that take on their own

Police procedural television shows, such as Law + Order, have introduced many to the Internal Affairs Bureau: police officers that investigate other police officers. This group of unloved cops comes to mind in connection with the HIV/AIDS research published this week by Rama Amara’s lab at Yerkes National Primate Research Center and Emory Vaccine Center.

“Killer” antiviral T cells (red spots) can be found in germinal centers. The green areas are B cell follicles, which HIV researchers have identified as major reservoirs for the virus. Image courtesy of Rama Amara.

HIV infection is hard to get rid of for many reasons, but one is that the virus infects the cells in the immune system that act like police officers. The “helper” CD4 T cells that usually support immune responses become infected themselves. For the immune system to fight HIV effectively, the “killer” CD8 antiviral T cells would need to take on their own CD4 colleagues.

When someone is HIV-positive and is taking antiretroviral drugs, the virus is mostly suppressed but sticks around in a reservoir of inactive infected cells. Those cells hide out in germinal centers, specialized areas of lymph nodes, which most killer antiviral T cells don’t have access to. A 2015 Nature Medicine paper describes B cell follicles, which are part of germinal centers, as “sanctuaries” for persistent viral replication. (Imagine some elite police unit that has become corrupt, and uniformed cops can’t get into the places where the elite ones hang out. The analogy may be imperfect, but might help us visualize these cells.)

Amara’s lab has identified a group of antiviral T cells that do have the access code to germinal centers, a molecule called CXCR5. Knowing how to induce antiviral T cells displaying CXCR5 will be important for designing better therapeutic vaccines, as well as efforts to suppress HIV long-term, Amara says. The paper was published in PNAS this week. Read more

Posted on by Quinn Eastman in Immunology Leave a comment

Neuroscientists show hippocampus also has important role in emotional regulation

A region of the brain called the hippocampus is known for its role in memory formation. Scientists at Yerkes National Primate Research Center, Emory University are learning more about another facet of hippocampal function: its importance in the regulation and expression of emotions, particularly during early development.

Using a nonhuman primate model, their findings provide insight into the mechanisms of human psychiatric disorders associated with emotion dysregulation, such as PTSD (post-traumatic stress disorder) and schizophrenia. The results were published online recently by the journal Psychoneuroendocrinology.

“Our findings demonstrate that damage to the hippocampus early in life leads to increased anxiety-like behaviors in response to an unfamiliar human,” says research associate Jessica Raper, PhD, first author of the paper. “However, despite heightened anxious behavior, cortisol responses to the social stress were dampened in adulthood.”

The hormone cortisol modulates metabolism, the immune system and brain function in response to stress. Reduced hippocampal volume and lower cortisol response to stressors have been demonstrated as features of and risk factors for PTSD, Raper says. Also, the dampened daily rhythms of cortisol seen in the nonhuman primates with hippocampal damage resemble those reported in first-episode schizophrenia patients.

Follow-up studies could involve temporary interference with hippocampus function using targeted genetic techniques, she says. Read more

Posted on by Quinn Eastman in Neuro Leave a comment

Oxytocin receptor levels predict comforting behavior in prairie voles

Different levels of a receptor for a hormone involved in social bonding may explain individual variation in offering comfort during stressful situations. Like humans, animals console each other in times of distress: monkeys hug and kiss, and prairie voles groom each other.

James Burkett, PhD

James Burkett, PhD

Emory postdoc James Burkett described his research on voles at a press conference on “The Neuroscience of Emotion and Social Behavior” at the Society for Neuroscience meeting in San Diego on Sunday. Here are Video (Burkett’s part is roughly from 4:50 to 9:00) and the scientific abstract.

Burkett’s presentation, on oxytocin-dependent comforting behavior in prairie voles, outlined an extension of his graduate work with Larry Young at Yerkes National Primate Research Center, which was published in Science in January 2016 and impressed oxytocin skeptic Ed Yong. Burkett, now in Gary Miller’s laboratory at Rollins School of Public Health, also masterminded a Reddit “Ask me anything” in February.

The rest of the Society for Neuroscience press release:

Previous research indicates oxytocin—a hormone that promotes social and maternal bonding—acts in the anterior cingulate cortex (ACC) of the prairie vole brain to encourage consoling behavior. In humans, the ACC activates when people see others in pain. Some degree of personal distress motivates comforting behaviors, but too much actually makes animals (including humans, chimpanzees, and rats) less likely to offer comfort.

Read more

Posted on by Quinn Eastman in Neuro Leave a comment

SIV remission follow-up

The surprising finding that an antibody treatment can push SIV-infected monkeys into prolonged remission, even after antiviral drugs are stopped, continues to rumble across the internet.

siv-a4b7-teaser-copy

Blue circles show how viral levels stayed low even after antiretroviral drugs were stopped.

The Science paper was featured on NIH director Francis Collins’ blog this week. NIAID director Anthony Fauci has been giving presentations on the research, which emerged from a collaboration from his lab and Tab Ansari’s at Emory. Fauci’s talk at the recent HIV prevention meeting in Chicago is viewable here.

At Lab Land, we were pleased to see that the watchdogs at Treatment Action Group had this to say:

“Media coverage of the paper has generally been accurate, but has had to wrestle with the uncertainty that exists among scientists regarding how ART-free control of viral load should be described.”

HIV pioneer Robert Gallo noted in an article accompanying the Science paper that the anti-integrin antibody treatment represents an emerging alternative to the vaunted “shock and kill” strategy, which he termed “soothe and snooze.” Note to reporters: the upcoming “Strategies for an HIV cure” conference at NIH in mid-November might be a good chance to compare the different strategies and put them in perspective.

Read more

Posted on by Quinn Eastman in Immunology Leave a comment

Vaccine vs many common cold viruses achievable

Scientists are making the case that a vaccine against rhinoviruses, the predominant cause of the common cold, is achievable.

The quest for a vaccine against rhinoviruses may have seemed quixotic, because there are more than 100 varieties circulating around the world. Even so, the immune system can handle the challenge, researchers from Emory University School of Medicine and Children’s Healthcare of Atlanta say.

Martin Moore, PhD

Martin Moore, PhD

Vaccines that combine dozens of varieties of rhinovirus at once are effective in stimulating antiviral antibodies in mice and monkeys, the researchers report in Nature Communications. The paper was also posted on Biorxiv before publication.

“We think that creating a vaccine for the common cold can be reduced to technical challenges related to manufacturing,” says Martin Moore, PhD, associate professor of pediatrics at Emory University School of Medicine and Children’s Healthcare of Atlanta. Read more

Posted on by Quinn Eastman in Immunology Leave a comment

HD monkeys display full spectrum of symptoms seen in humans

Transgenic Huntington’s disease monkeys display a full spectrum of symptoms resembling the human disease, ranging from motor problems and neurodegeneration to emotional dysregulation and immune system changes, scientists at Yerkes National Primate Research Center, Emory University report.

The results, published online in the journal Brain, Behavior and Immunity, strengthen the case that transgenic Huntington’s disease monkeys could be used to evaluate emerging treatments (such as this) before launching human clinical trials.

“Identifying emotional and immune symptoms in the HD monkeys, along with previous studies demonstrating their cognitive deficits and fine motor problems, suggest the HD monkey model embodies the full array of symptoms similar to human patients with the disease,” says Yerkes research associate Jessica Raper, PhD, lead author of the paper. Read more

Posted on by Quinn Eastman in Neuro Leave a comment

The cure word, as applied to HIV

HIV researchers are becoming increasingly bold about using the “cure” word in reference to HIV/AIDS, even though nobody has been cured besides the “Berlin patient,” Timothy Brown, who had a fortuitous combination of hematopoetic stem cell transplant from a genetically HIV-resistant donor. Sometimes researchers use the term “functional cure,” meaning under control without drugs, to be distinct from “sterilizing cure” or “eradication,” meaning the virus is gone from the body. A substantial obstacle is that HIV integrates into the DNA of some white blood cells.

HIV cure research is part of the $35.6 million, five-year grant recently awarded by the National Institutes of Health to Yerkes/Emory Vaccine Center/Emory Center for AIDS Research. Using the “shock and kill” approach during antiviral drug therapy, researchers will force HIV (or its stand-in in non-human primate research, SIV) to come out of hiding from its reservoirs in the body. The team plans to test novel “latency reversing agents” and then combine the best one with immunotherapeutic drugs, such as PD-1 blockers, and therapeutic vaccines.

The NIH also recently announced a cluster of six HIV cure-oriented grants, named for activist Martin Delaney, to teams led from George Washington University, University of California, San Francisco, Fred Hutchinson Cancer Research Center, Wistar Institute, Philadelphia, Beth Israel Deaconess Medical Center and University of North Carolina. Skimming through the other teams’ research plans, it’s interesting to see the varying degrees of emphasis on “shock and kill”/HIV latency, enhancing the immune response, hematopoetic stem cell transplant/adoptive transfer and gene editing weaponry vs HIV itself.

Posted on by Quinn Eastman in Immunology Leave a comment

Manipulating motivation in mice

Emory researchers have identified molecular mechanisms that regulate motivation and persistence in mice. Their findings could have implications for intervention in conditions characterized by behavioral inflexibility, such as drug abuse and depression.

Scientists showed that by manipulating a particular growth factor in one region of the brain, they could tune up or down a mouse’s tendency to persist in seeking a reward. In humans, this region of the brain is located just behind the eyes and is called the medial orbitofrontal cortex or mOFC.

“When we make decisions, we often need to gauge the value of a reward before we can see it — for example, will lunch at a certain restaurant be better than lunch at another, or worth the cost,” says Shannon Gourley, PhD, assistant professor of pediatrics and psychiatry at Emory University School of Medicine. “We think the mOFC is important for calculating value, particularly when we have to imagine the reward, as opposed to having it right in front of us.”

The results were published Wednesday in Journal of Neuroscience.

Shannon Gourley, PhD

Being able to appropriately determine the value of a perceived reward is critical in goal-directed decision making, a component of drug-seeking and addiction-related behaviors. While scientists already suspected that the medial orbitofrontal cortex was important for this type of learning and decision-making, the specific genes and growth factors were not as well-understood.

The researchers focused on brain-derived neurotrophic factor (BDNF), a protein that supports the survival and growth of neurons in the brain. BDNF is known to play key roles in long-term potentiation and neuronal remodeling, both important in learning and memory tasks. Variations in the human gene that encodes BDNF have been linked with several psychiatric disorders.

Read more

Posted on by Quinn Eastman in Neuro Leave a comment

Starvation signals control intestinal inflammation in mice

Intestinal inflammation in mice can be dampened by giving them a diet restricted in amino acids, the building blocks of proteins, researchers have found. The results were published online by Nature on Wednesday, March 16.

The findings highlight an ancient connection between nutrient availability and control of inflammation. They also suggest that a low protein diet — or drugs that mimic its effects on immune cells — could be tools for the treatment of inflammatory bowel diseases, such as Crohn’s disease or ulcerative colitis.

The research team, led by Emory Vaccine Center immunologist Bali Pulendran, discovered that mice lacking the amino acid sensor GCN2 are more sensitive to the chemical irritant DSS (dextran sodium sulfate), often used to model colitis in animals. This line of research grew out of the discovery by Pulendran and colleagues that GCN2 is pivotal for induction of immunity to the yellow fever vaccine.

“It is well known that the immune system can detect and respond to pathogens, but these results highlight its capacity to sense and adapt to environmental changes, such as nutritional starvation, which cause cellular stress,” he says.

Read more

Posted on by Quinn Eastman in Immunology Leave a comment