Antibody production: an endurance sport

To understand recent research from immunologist Jerry Boss’s lab on antibody production, think about the distinction between sprinting and long-distance Read more

Less mucus, more neutrophils: alternative view of CF

A conventional view of cystic fibrosis (CF) and its effects on the lungs is that it’s all about mucus. Rabin Tirouvanziam has an alternative view, centered on Read more

Xinping Huang

Viral vectors ready for delivery

The phrase “viral vector” sounds ominous, like something from a movie about spies and internet intrigue. It refers to a practical delivery system for the gene of your choice. If you are a biomedical researcher and you want to tweak genes in a particular part of the body in an experimental animal, viral vectors are the way to go.

Viral vector-transduced retinal ganglion cell; dendrites and axons labeled with GFP. Courtesy Felix Struebling via Xinping Huang

Emory’s Viral Vector Core was started when eminent neuroscientist Kerry Ressler was at Emory and is now overseen by geneticist Peng Jin. Technical director Xinping Huang and her colleagues can produce high-titer viral vectors, lentivirus and AAV. Discuss with her the best choice. It may depend on the size of the genetic payload you want to deliver and whether you want the gene to integrate into the genome of the target cell.

As gene therapy and CRISPR/Cas9-style gene editing research progresses, we can anticipate demand for services such as those provided by the Viral Vector Core. [Clinical applications are close, but will not be dealt with in the same place!]

Shi-Hua Li’s and Xiao-Jiang Li’s paper on CRISPR/Cas9 gene editing in a mouse model of Huntington’s disease, featured by NBC News last year, credits the Viral Vector Core. Read more

Posted on by Quinn Eastman in Neuro Leave a comment