The journey of a marathon sleeper

A marathon sleeper who got away left some clues for Emory and University of Florida scientists to Read more

A push for reproducibility in biomedical research

At Emory, several scientists are making greater efforts to push forward to improve scientific research and combat what is being called “the reproducibility crisis.” Guest post from Erica Read more

Exosomes as potential biomarkers of radiation exposure

Exosomes = potential biomarkers of radiation in the Read more

Winship Cancer Institute

Proton Therapy and Its Importance to Georgia

From Clinic to You

By Walter J. Curran, Jr., MD
Executive Director, Winship Cancer Institute
Chair, Department of Radiation Oncology, Emory University School of Medicine

Walter J. Curran, Jr., MD

Walter J. Curran, Jr., MD

Emory Healthcare is a key player in plans to bring the world’s most advanced radiation treatment for cancer patients to Georgia.  Emory Healthcare has signed a letter of intent with Advanced Particle Therapy, LLC, of Minden, Nevada, opening the door to a final exploratory phase for development of The Georgia Proton Treatment Center – Georgia’s first proton therapy facility.

For certain cancers, proton therapy offers a more precise and aggressive approach to destroying cancerous and non-cancerous tumors, as compared to conventional X-ray radiation. Proton therapy involves the use of a controlled beam of protons to target tumors with precision unavailable in other radiation therapies. According to The National Association for Proton Therapy, the precise delivery of proton energy may limit damage to healthy surrounding tissue, potentially resulting in lower side effects to the patient. This precision also allows for a more effective dose of radiation to be used.

Proton therapy is frequently used in the care of children diagnosed with cancer, as well as in adults who have small, well-defined tumors in organs such as the prostate, brain, head, neck, bladder, lungs, or the spine.  And research is continuing into its efficacy in other cancers.

The gantry, or supporting structure, of a proton therapy machine.

The gantry, or supporting structure, of a proton therapy machine.

The closest proton therapy facility to Georgia is the University of Florida Proton Therapy Institute in Jacksonville.  Currently there are only nine proton therapy centers in the United States, including centers at Massachusetts General Hospital, MD Anderson Cancer Center in Houston and the University of Pennsylvania.

This is an exciting development in our ability to offer not only patients throughout Georgia and the Southeast the widest possible array of treatment options but patients from around the world who can come to Atlanta via the world’s busiest airport, Hartsfield-Jackson International. In addition, we will work to expand its utility and access for patients through collaborative research projects with Georgia Tech and other institutions. Winship physicians will also be able to reach out to their international colleagues and provide direction in how best to study and implement this technology in the care of cancer patients.

Under the letter of intent, Emory Healthcare faculty and staff will provide physician services, medical direction, and other administrative services to the center. Advanced Particle Therapy, through a Special Purpose Company, Georgia Proton Treatment Center, LLC, (GPTC) will design, build, equip and own the center.  The facility, which will be funded by GPTC, will be approximately 100,000 square feet and is expected to cost approximately $200 million.  Site selection for the facility is underway, and pending various approvals, groundbreaking is expected in the Spring of 2012.

Video

The follow video presents a 3D simulation of proton therapy technology.

Additional Information:

Posted on by Vince Dollard in Uncategorized 1 Comment

The science of caring

Handprints

“It is the oncology nurse whose ‘fingerprints’ are on the entire matrix of therapies,” said Seliza Mithchell.

A keynote presentation on “fingerprints” might be more suited to a police convention than an oncology nursing symposium.  That is unless Selinza Mitchell is the speaker. Mitchell, a nurse educator and presenter was the keynote speaker at the third annual Winship Oncology Nursing Symposium, held March 18 and 19 at the Evergreen Conference Center in Stone Mountain, Georgia.

Mitchell’s presentation focused on the impact oncology nurses have on the hundreds of patients and families they touch, both literally and figuratively.  It is the oncology nurse whose “fingerprints” are on the entire matrix of therapies, from administration of today’s latest targeted-therapy drugs to helping patients and families navigate an increasingly complex health care system.

That concept also formed the basis of many of the discussion groups that were part of the symposium.  “The entire model of care delivery is changing,” says Amelia Langston, MD, professor of Hematology and Medical Oncology at the Winship Cancer Institute.  “Care delivery is more of a team approach and is less physician-centered.  Therefore there is great interest in the expanding role of nurses, nurse practitioners, and physician assistants.”

Amelia Langston presenting at the Winship Oncology Nursing Symposium

Amelia Langston presenting at the Winship Oncology Nursing Symposium

The Winship Oncology Nursing Symposium has grown in three short years into one of the most informative and influential among this growing market of nursing continuing education opportunities.  Among the topics covered in this year’s meeting were cancer genetics, image-guided medicine, minimally invasive treatment, disease-specific topics and the expanding role of non-physician providers against the backdrop of health care reform.

“The health care system is demanding cost effective, clinically relevant continuing education programs in nursing and specifically in oncology nursing,” says Joan Giblin, MSN, FNP, a course director for the symposium and Manager of Patient Access at Winship.  “Offering a high quality, regional program that can provide the latest information on advanced nursing practice, research, and other issues is central to meeting that need.”

In addition to Joan Giblin, course directors for the event were Deena Gilland, RN, MSN, Director of Nursing at Winship, and Kevin Schreffler, RN, MSN, Clinical Nurse Specialist at Winship.

Posted on by Wendy Darling in Uncategorized Leave a comment

When bone marrow goes bad

Plasma cells live in our bone marrow. Their job: to make antibodies that protect us from bacteria and viruses. But if those plasma cells grow unchecked, that unchecked growth leads to multiple myeloma.

Sagar Lonial, MD

Multiple myeloma is a type of cancer that results in lytic bone disease, or holes in the bones. What’s more, the cancerous cells crowd out normal bone marrow resulting in anemia or a low white count, leaving a person vulnerable to infections.

Sagar Lonial, MD, an oncologist at Winship Cancer Institute, Emory University, treats people with multiple myeloma. The prognosis for people with this type of cancer is poor; however, researchers are gaining on the disease. Twenty years ago, the survival rate was two to three years; now, it’s four to five.

Lonial says one of the keys to improving patients’ prognosis is increasing their enrollment in clinical trials and better access to life-extending drugs.

Read more

Posted on by Robin Tricoles in Cancer Leave a comment

Resurgence of interest in cancer cell metabolism

A recent article in Nature describes the resurgence of interest in cancer cell metabolism. This means exploiting the unique metabolic dependencies of cancer cells, such as their increased demand for glucose.

Cancer cells' preference for glucose is named after 1931 Nobelist Otto Warburg

Otto Warburg, who won the Nobel Prize in Medicine in 1931, noticed that cancer cells have a “sweet tooth” decades ago, but only recently have researchers learned enough about cancer cells’ regulatory circuitry to possibly use this to their advantage.

At Winship Cancer Institute of Emory University, several scientists have been investigating aspects of this phenomenon. Jing Chen and his team have identified a switch, the enzyme pyruvate kinase, which many types of cancer use to control glucose metabolism, and that might be a good drug target.

Jing Chen, PhD, and Taro Hitosugi, PhD

Shi-Yong Sun, Wei Zhou and their colleagues have found that cancer cells are sneaky: blockade the front door (for glucose metabolism, this means hitting them with the chemical 2-deoxyglucose) and they escape out the back by turning on certain survival pathways. This means combination tactics or indirectly targeting glucose metabolism through the molecule mTOR might be more effective, the Nature article says.

A quote from the article:

Clearly, metabolic pathways are highly interconnected with pathways that govern the hallmarks of cancer, such as unrestrained proliferation and resistance to cell death. The many metabolic enzymes, intermediates and products involved could be fertile ground for improving cancer diagnostics and therapeutics.

Posted on by Quinn Eastman in Cancer Leave a comment

Winship Cancer Institute covers emotional aspects of cancer

The Winship Cancer Institute of Emory University offers a collaborative approach for dealing with cancer that begins as soon as a patient is diagnosed. The program considers the emotional, psychological and physical symptoms associated with cancer and its treatment.

Winship Cancer Institute of Emory University

And options for patients may include cognitive therapy, antidepressants, or both. Anger, fear, and anxiety mixed with the physical and emotional side effects of cancer treatments can lead to depression during and even after treatment, when patients may feel isolated.

Darren Johnson spent his 19th birthday undergoing a bone marrow transplant. A few weeks earlier, Johnson had been diagnosed with myelodysplasia, a form of leukemia in which the bone marrow fails to produce enough normal blood cells. He endured a year of treatment and then a lengthy recovery. (Watch “When Life Goes On,” a short video about his story.)

Only relatively recently have health care providers turned serious attention to the emotional well-being of cancer patients. They have realized that easing the emotional burden of a cancer diagnosis for patients and families may actually improve treatment and outcome.

Read more

Posted on by Robin Tricoles in Uncategorized Leave a comment

Working with the news media to communicate medicine and science

Working with the news media is an effective way for academic researchers and physicians to educate the public, says Otis Brawley, MD, one of the most recognized figures in medicine today. Brawley spoke recently with physician/researchers at the Winship Cancer Institute of Emory University about the importance of working with the news media to explain difficult medical concepts and to influence public opinion on health issues and the importance of research.

Brawley is chief medical officer of the American Cancer Society and a professor of hematology and medical oncology at Emory School of Medicine. He is a regular contributor to CNN and is featured as one of four medical experts on cnn.com/health, one of the most widely viewed health-related websites.

Brawley’s advice? Concise messages are important when communicating through print or electronic media. He typically consolidates what he wants to say into three points, which helps keep the message simple and understandable. He also tries to include colleagues in descriptions of his work and avoid jargon.

Acknowledging the difficulty of communicating complex medical concepts and data in lay language for the average news audience, Brawley strongly suggests working with an institution’s media relations staff. This team can help physicians and scientists with their communications skills and connecting with the right audiences.

Posted on by Vince Dollard in Uncategorized Leave a comment

HER2-positive breast cancer treatment options studied

Emory oncologist Ruth O’Regan, MD, is leading a trial testing whether Afinitor can reverse resistance to Herceptin in metastatic HER2-positive breast cancer patients. As part of the trial, some patients been receiving a drug called Afinitor (everolimus) along with chemotherapy and Herceptin (trastuzumab).

Ruth O'Regan, MD

About 25 percent to 30 percent of breast cancers are HER2 -positive, which means they test positive for a protein called human epidermal growth factor receptor-2 (HER2). This protein promotes the growth of cancer cells, making HER2 -positive breast cancers more aggressive than other types.

They also tend to be less responsive to hormone treatment. That’s the bad news. The good news is that this type of cancer responds extremely well to Herceptin.

Herceptin specifically targets HER2 cells, killing them while sparing healthy cells, so side effects are minimal. Its effectiveness has made Herceptin the gold standard of treatment for HER2 -positive breast cancer.

Read more

Posted on by Jennifer Johnson in Cancer Leave a comment

Stereotactic radiosurgery: fast, friendly, focused

Cynthia Anderson, MD

When Cynthia Anderson, MD, prepares her patients for stereotactic radiosurgery she emphasizes three things: the surgery is fast, friendly and focused. Initially used to treat the part of the brain associated with brain tumors, stereotactic radiosurgery has gained currency as a treatment for various types of cancer. This type of surgery uses x-ray beams instead of scalpels to eliminate tumors of the liver, lung and spine.

“It’s fast because the actual radiation treatment itself is very short,” says Anderson, a radiation oncologist at the Winship Cancer Institute of Emory University. “It’s friendly because it’s all done as an outpatient. And it’s focused because these targeted radiation beams get the maximum dose of radiation to a tumor and give the most minimal dose of radiation to the critical organs that surround the tumor.”

Read more

Posted on by Robin Tricoles in Uncategorized Leave a comment
« Previous   1 2 3 4