Tracing the start of COVID-19 in GA

At a time when COVID-19 appears to be receding in much of Georgia, it’s worth revisiting the start of the pandemic in early 2020. Emory virologist Anne Piantadosi and colleagues have a paper in Viral Evolution on the earliest SARS-CoV-2 genetic sequences detected in Georgia. Analyzing relationships between those virus sequences and samples from other states and countries can give us an idea about where the first COVID-19 infections in Georgia came from. We can draw Read more

Reddit as window into opioid withdrawal strategies

Drug abuse researchers are using the social media site Reddit as a window into the experiences of people living with opioid addiction. Abeed Sarker in Emory's Department of Biomedical Informatics has a paper in Clinical Toxicology focusing on the phenomenon of “precipitated withdrawal,” in collaboration with emergency medicine specialists from Penn, Rutgers and Mt Sinai. Precipitated withdrawal is a more intense form of withdrawal that can occur when someone who was using opioids starts medication-assisted treatment Read more

CROI: HIV cure report and ongoing research

The big news out of CROI (Conference on Retroviruses and Opportunistic Infections) was a report of a third person being cured of HIV infection, this time using umbilical cord blood for a hematopoetic stem cell transplant. Emory’s Carlos del Rio gave a nice overview of the achievement for NPR this morning. As del Rio explains, the field of HIV cure research took off over the last decade after Timothy Brown, known as “the Berlin patient,” Read more

William Kaiser

Explainer: oncolytic viruses

A recent publication from Bill Kaiser’s and Ed Mocarski’s labs in Cell Host & Microbe touches on a concept that needs explaining: oncolytic viruses.

Viruses have been subverting the machinery of healthy cells for millions of years, and many viruses tend to infect particular tissues or cell types. So they are a natural starting point for researchers to engineer oncolytic viruses, which preferentially infect and kill cancer cells.

Several oncolytic viruses have progressed to advanced clinical trials. Amgen’s “T-Vec”, a modified herpes simplex virus, could be the first to be approved by the FDA this year based on its efficacy against metastatic melanoma.  Read more

Posted on by Quinn Eastman in Cancer Leave a comment

Cell death drug discovery: come at the king, you best not miss

It may seem like a stretch to compare an enzyme to a notorious criminal, especially one as distinctive as Omar Little, a character from the HBO drama The Wire played by Michael Kenneth Williams.

But stick with me, I’ll explain.

TheWire-OmarLittle2-Portable

Omar is a stick-up man who robs street-level drug dealers. When drug dealer henchmen Stinkum and Weebay ambush him, they are unsuccessful and Stinkum is killed. Omar tells Weebay, who is hiding behind a car: “Come at the king, you best not miss.”

At Emory, Ed Mocarski, Bill Kaiser and colleagues at GlaxoSmithKline have been studying an enzyme called RIP3. RIP3 is the king of a form of programmed cell death called necroptosis. RIP3 is involved in killing cells as a result of several inflammation-, infection- or injury-related triggers, so inhibitors of RIP3 could be useful in modulating inflammation in many diseases.

In a new Molecular Cell paper, Mocarski, Kaiser and their co-authors lay out what happened when they examined the effects of several compounds that inhibit RIP3 in cell culture. These compounds stopped necroptosis, but unexpectedly, they unleashed apoptosis, another form of programmed cell death.  Read more

Posted on by Quinn Eastman in Immunology Leave a comment

Two angles on cell death

One can take two very different angles when approaching Bill Kaiser’s and Ed Mocarski’s work on RIP kinases and the mechanisms of cell death. These are: the evolutionary where-does-apoptosis-come-from angle, and the anti-inflammatory drug discovery angle.

A pair of papers published this week, one in PNAS and one in Journal of Immunology, cover both of these angles. (Also, back to back papers in Cell this week, originating from Australia and Tennessee, touch on the same topic.)

First, the evolutionary angle.

Cellular suicide can be a “scorched earth” defense mechanism against viruses. Kaiser and Mocarski have been amassing evidence that some forms of cellular suicide arose as a result of an arms race of competition with viruses. The PNAS paper is part of this line of evidence. It shows that the cell-death circuits controlled by three different genes (RIP1, RIP3 and caspase 8) apparently can be lifted cleanly out of an animal. Mice lacking all three genes not only can be born, but have well-functioning immune systems.

Apoptosis is thought to be a form of cellular suicide important for the development of all multicellular organisms. That’s why, to cell and developmental biologists, it seemed rather shocking that researchers can mutate a group of genes that drive apoptosis and other forms of cellular suicide and have adult animals emerge.

Next, the drug discovery angle.

The J. Immunol paper makes that angle clear enough. Most of the authors on this paper are from GlaxoSmithKline’s “Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area.” Here, they show that a mutation in RIP1 inactivating the kinase enzyme protects mice against severe skin and multiorgan inflammation. They conclude their abstract with: “Together, these data suggest that RIP1 kinase represents an attractive therapeutic target for TNF-driven inflammatory diseases.”

Note: TNF-driven inflammatory diseases include rheumatoid arthritis, inflammatory bowel diseases and psoriasis, representing a multibillion dollar market.

 

Posted on by Quinn Eastman in Immunology Leave a comment