Mysterious DNA modification important in fly brain

Drosophila, despite being a useful genetic model of development, have very little DNA methylation on C. What they do have is methylation on A (technically, N6-methyladenine), although little was known about what this modification did for Read more

Where it hurts matters in the gut

What part of the intestine is problematic matters more than inflammatory bowel disease subtype (Crohn’s vs ulcerative colitis), when it comes to genetic activity signatures in pediatric Read more

Overcoming cisplatin resistance

Cisplatin was known to damage DNA and to unleash reactive oxygen species, but the interaction between cisplatin and Mek1/cRaf had not been observed Read more

Warren Gray

What are exosomes?

Biomedical engineer Mike Davis reports he has obtained NHLBI funding to look into therapeutic applications of exosomes in cardiology. But wait. What are exosomes? Time for an explainer!

Exosomes are tiny membrane-wrapped bags, which form inside cells and are then spat out. They’re about 100 or 150 nanometers in diameter. That’s smaller than the smallest bacteria, and about as large as a single influenza or HIV virion. They’re not visible under a light microscope, but are detectable with an electron microscope.

Scientific interest in exosomes shot up after it was discovered that they can contain RNA, specifically microRNAs, which inhibit the activity of other genes. This could be another way in which cells talk to each other long-distance, besides secreting proteins or hormones. Exosomes are thus something like viruses, without the infectivity.

Since researchers are finding that microRNAs have potential as therapeutic agents, why not harness the vehicles that cells use to send microRNAs to each other? Similarly, if so much evidence points toward the main effect of cell therapy coming from what the cells make rather than the cells themselves, why not simply harvest what the cells make? Read more

Posted on by Quinn Eastman in Heart Leave a comment