Can blood from coronavirus survivors save the lives of others?

Donated blood from COVID-19 survivors could be an effective treatment in helping others fight the illness – and should be tested more broadly to see if it can “change the course of this pandemic,” two Emory pathologists say. The idea of using a component of survivors’ donated blood, or “convalescent plasma,” is that antibodies from patients who have recovered can be used in other people to help them defend against coronavirus. Emory pathologists John Roback, MD, Read more

Targeting metastasis through metabolism

Research from Adam Marcus’ and Mala Shanmugam’s labs was published Tuesday in Nature Communications – months after we wrote an article for Winship Cancer Institute’s magazine about it. So here it is again! At your last visit to the dentist, you may have been given a mouth rinse with the antiseptic chlorhexidine. Available over the counter, chlorhexidine is also washed over the skin to prepare someone for surgery. Winship researchers are now looking at chlorhexidine Read more

Immunotherapy combo achieves reservoir shrinkage in HIV model

Stimulating immune cells with two cancer immunotherapies together can shrink the size of the viral “reservoir” in SIV-infected nonhuman primates treated with antiviral drugs. Important implications for the quest to cure HIV, because reservoir shrinkage has not been achieved consistently Read more

Vahid Serpooshan

Model of a sticky situation

Here’s an example of how 3D printing can be applied to pediatric cardiology. It’s also an example of how Georgia Tech, Emory and Children’s Healthcare of Atlanta all work together.

Biomedical engineers used a modified form of gelatin to create a model of pulmonary arteries in newborn and adolescent patients with a complex (and serious) congenital heart defect: tetralogy of Fallot with pulmonary atresia. The model allowed the researchers to simulate surgical catheter-based intervention in vitro.

The results were recently published in Journal of the American Heart Association. Biomedical engineer Vahid Serpooshan and his lab collaborated with Sibley Heart Center pediatric cardiologist Holly Bauser-Heaton; both are part of the Children’s Heart Research and Outcomes Center.

“This is a patient-specific platform, created with state-of-the-art 3D bioprinting technology, allowing us to optimize various interventions,” Serpooshan says.

Model of an adolescent patient’s pulmonary arteries, created by 3D printing. From Tomov et al JAHA (2019) via Creative Commons

 

 

Posted on by Quinn Eastman in Heart Leave a comment

For nanomedicine, cell sex matters

The biological differences between male and female cells may influence their uptake of nanoparticles, which have been much discussed as specific delivery vehicles for medicines.

Biomedical engineer Vahid Serpooshan, PhD

New Emory/Georgia Tech BME faculty member Vahid Serpooshan has a recent paper published in ACS Nano making this point. He and his colleagues from Brigham and Women’s Hospital and Stanford/McGill/UC Berkeley tested amniotic stem cells, derived from placental tissue. They found that female amniotic cells had significantly higher uptake of nanoparticles (quantum dots) than male cells. The effect of cell sex on nanoparticle uptake was reversed in fibroblasts. The researchers also found out that female versus male amniotic stem cells exhibited different responses to reprogramming into induced pluripotent stem cells (iPSCs).

Female human amniotic stem cells with nanoparticles .Green: quantum dots/ nanoparticles; red: cell staining; blue: nuclei.

“We believe this is a substantial discovery and a game changer in the field of nanomedicine, in taking safer and more effective and accurate steps towards successful clinical applications,” says Serpooshan, who is part of the Department of Pediatrics and the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory.

Serpooshan’s interests lie in the realm of pediatric cardiology. His K99 grant indicates that he is planning to develop techniques for recruiting and activating cardiomyoblasts, via “a bioengineered cardiac patch delivery of small molecules.” Here at Emory, he joins labs with overlapping interests such as those of Mike Davis, Hee Cheol Cho and Nawazish Naqvi. Welcome!

Posted on by Quinn Eastman in Heart Leave a comment