Mitochondrial blindness -- Newman's Emory story

Neuro-ophthalmologist Nancy Newman’s 2017 Dean’s Distinguished Faculty Lecture and Award were unexpectedly timely. Her talk on Tuesday was a tour of her career and mitochondrial disorders affecting vision, culminating in a description of gene therapy clinical trials for the treatment of Leber’s hereditary optic neuropathy. The sponsor of those studies, Gensight Biologics, recently presented preliminary data on a previous study of their gene therapy at the American Academy of Neurology meeting in April. Two larger trials Read more

IMSD program nurtures young scientists

The IMSD (Initiative to Maximize Student Development) program nurtures and mentors a diverse group of young scientists at Read more

Flu meeting at Emory next week

We are looking forward to the “Immunology and Evolution of Influenza” symposium next week (Thursday the 25th and Friday the Read more

Taryn McLaughlin

Malaria vaccine development: chimeric protein, no myth

Third in a series on malaria immunology from graduate student Taryn McLaughlin. Sorry for the delay last week, caused by technical blog glitches.

It’s easy for me to find reasons to brag when it comes to research here at Emory. However, even an unbiased person should be excited about the malaria vaccine platform being developed by Alberto Moreno at the Emory Vaccine Center.

His vaccine is based on a chimeric protein (a protein that is a combination of bits and pieces of multiple proteins, a la the creature from Greek mythology) that should get your immune system to target multiple stages of the Plasmodium vivax life cycle. Part of it targets the infectious sporozoite, part of it targets the blood stage merozoite, and part of it will even target the transmitted gamete in future versions. This seems like a no brainer. Of course we should be targeting multiple stages! 
Read more

Posted on by Quinn Eastman in Immunology Leave a comment

Why the RTS,S malaria vaccine is such a tease

Continuing from Monday’s post, IMP graduate student Taryn McLaughlin explains why the most advanced malaria vaccine is actually not that great.

Malaria has plagued humans for thousands of years. And while we have known the causative agents of the disease- for 150 years, malaria remains scientifically frustrating. In fact, one of the most common treatments for the disease is simply a derivative of a treatment used in ancient China.

One of the most frustrating features is that there is no sterilizing immunity. In other words, for many diseases once you are infected with the microbe responsible, you develop an immune response and then never get the disease again. Not so with malaria. Compounded with terrible treatment and the impracticality of ridding the world of mosquitos, a vaccine sounds like pretty much our only hope. And yet this has been scientifically challenging and unsuccessful for many many reasons.

In fact a number of vaccine candidates have come along in the last few decades that have seemed SO promising only to go on and break our hearts in clinical trials. The most recent of which is a vaccine that goes by the name RTS,S (named for the different components of the vaccine).

As a quick refresher, Plasmodium enters the body via mosquitos as a sporozoite. It then migrates through the skin going into the blood and eventually making it’s way to the liver. Here it goes inside liver cells where it replicates and turns into merozoites (such that one sporozoite becomes thousands of merozoites). This stage of the disease is asymptomatic. Some time later, all those merozoites burst out of your liver cells causing mayhem and invading your red blood cells. Here, they once again replicate and metamorphose. Fun times. Anyways, during the last stage, some of those plasmodium become gametes which get eaten by mosquitos thus completing the life cycle. Read more

Posted on by Quinn Eastman in Immunology Leave a comment

Why malaria vaccine development is hard

In recognition of World Malaria Day, Lab Land will have a series of posts from Taryn McLaughlin, a graduate student in Emory’s IMP program. Her posts will set the stage for upcoming news about malaria research at Emory and Yerkes. Taryn is part of Cheryl Day’s lab and is also an associate producer with the AudiSci podcast.

Those of us in the US are fortunate to not have to consider malaria in our day-to-day lives. Globally though, malaria is a serious public health threat with nearly 3.2 billion people at risk and close to half a million deaths every year. The scientific community has been developing malaria vaccines for decades. Yet a robust vaccine still remains elusive. Why?

IMP graduate student Taryn McLaughlin

IMP graduate student Taryn McLaughlin

One set of barriers comes from economics: malaria’s strongest impact is in developing countries. But there is just as strong a case to be made for scientific obstacles. Frankly, the parasite (technically a bunch of species of microbes that I’ll just lump together under the umbrella term Plasmodium) that causes malaria is just smarter than we are.

I’m only kidding, but it is a fascinating organism. Its complexity makes it difficult to pin down and also interesting to write about. But before we talk about why Plasmodium is such a pain, let’s first discuss what exactly makes an effective vaccine. Read more

Posted on by Quinn Eastman in Immunology Leave a comment