NINDS supporting Emory/UF work on myotonic dystrophy

NINDS grant will support collaboration between Gary Bassell and Eric Wang on myotonic Read more

Antios moving ahead with potential drug vs hepatitis B

Antios Therapeutics is moving ahead clinical studies of an antiviral drug aimed at hepatitis Read more

Traynelis lead researcher on CureGRIN/Chan Zuckerberg award

The CureGRIN Foundation works closely with Emory pharmacologist Stephen Traynelis, who has been investigating rare genetic disorders affecting NMDA Read more

T cells

Graft vs host? Target the aurora

 

Graft-vs-host disease is a common and potentially deadly complication following bone marrow transplants, in which immune cells from the donated bone marrow attack the recipient’s body.

Winship Cancer Institute’s Ned Waller and researchers from Children’s Healthcare of Atlanta and Yerkes National Primate Research Center were part of a recent Science Translational Medicine paper that draws a bright red circle around aurora kinase A as a likely drug target in graft-vs-host disease.

Aurora kinases are enzymes that control mitosis, the process of cell division, and were first discovered in the 1990s in yeast, flies and frogs. Now drugs that inhibit aurora kinase A are in clinical trials for several types of cancer, and clinicans are planning to examine whether the same type of drugs could help with graft-vs-host disease.

Leslie Kean, a pediatric cancer specialist at Seattle Children’s who was at Emory until 2013, is the senior author of the STM paper. Seattle Childrens’ press release says that Kean wears a bracelet around her badge from a pediatric patient cured of leukemia one year ago, but who is still in the hospital due to complications from graft-vs-host. Read more

Posted on by Quinn Eastman in Cancer, Immunology Leave a comment

Everything in moderation, especially TH17 cells

I was struck by one part of Mirko Paiardini’s paper that was published this week in Journal of Clinical Investigation. It describes a treatment aimed at repairing immune function in SIV-infected monkeys, with an eye toward helping people with HIV one day. One of the goals of their IL-21 treatment is to restore intestinal Th17 cells, which are depleted by viral infection. In this context, IL-21’s effect is anti-inflammatory.

However, Th17 cells are also involved in autoimmune disease. A recent Cell Metabolism paper from endocrinologist Roberto Pacifici and colleagues examines Th17 cells, with the goal of treating bone loss coming from an overactive parathyroid. In that situation, too many Th17 cells are bad and they need to be beaten back. Fortunately, both an inexpensive blood pressure medication and a drug under development for psoriasis seem to do just that.

Note for microbiome fans: connections between Th17 cells and intestinal microbes (segmented filamentous bacteria) are strengthening. It gets complicated because gut microbiota, together with Th17 cells, may influence metabolic disease and Th17-like cells are also in the skin — location matters.

Posted on by Quinn Eastman in Immunology Leave a comment

CMV reactivation warps immune system after HSCT

As a followup to yesterday’s post on following troublemaker cells in patients with lupus, we’d like to highlight a recent paper in Blood that takes a similar approach to studying how the immune system comes back after bone marrow/blood stem cell transplant.

Leslie Kean, MD, PhD

The paper’s findings have implications for making this type of transplant safer and preventing graft-versus-host disease. In a bone marrow/blood stem cell transplant, to fight cancer, doctors are essentially clearing out someone’s immune system and then “planting” a new one with the help of a donor. What this paper shows is how much CMV (cytomegalovirus) distorts the new immune system.

CMV is often thought of as harmless — most adults in the United States have been infected with CMV by age 40 and don’t get sick because of it. But in this situation, CMV’s emergence from the shadows forces some of the new T cells to multiply, dominating the immune system so much that it creates gaps in the rest of the T cell repertoire, which can compromise protective immunity. Other seemingly innocuous viruses like BK cause trouble in immunosuppressed patients after kidney transplant.

The senior author, Leslie Kean, moved from Emory to Seattle Children’s Hospital in 2013, and her team began these studies here in 2010 (a host of Emory/Winship hematologists and immunologists are co-authors). This paper is sort of a mirror image of the Nature Immunology paper on lupus because it also uses next-generation sequencing to follow immune cells with DNA rearrangements — in this case, T cells. Read more

Posted on by Quinn Eastman in Cancer, Immunology Leave a comment

General-heavy army disastrous in immune battle

Immunologists have identified two big groups of T cells: “helper” CD4+ cells and “killer” CD8+ cells.* The helper cells can produce immune regulatory molecules and promote antibody responses, while the killer cells recognize and destroy virally-infected cells.

A vaccine against a virus that stimulates only helper CD4+ cells leads to uncontrolled lethal inflammation in mice once the animals are challenged with the virus, a recent paper in Science shows. Emory Vaccine Center director Rafi Ahmed is a co-author.

Senior author Dan Barouch, from Harvard/Beth Israel Deaconess Medical Center, tells The Scientist that CD4+ cells are like generals directing the battle of the immune system and “if you just have strategic generals and no soldiers, it turns out to be worse than having no army at all.” Rebalancing the system with antiviral CD8+ T cells or antibodies helps limit the problems.

The findings mesh with work by Yerkes investigators [Guido Silvestri and colleagues] suggesting that HIV vaccines that boost CD4+ cells in gateway mucosal tissues lead to higher rates of infection. In both cases, the lesson is: having more helper CD4+ T cells around actually does not help. Read more

Posted on by Quinn Eastman in Immunology Leave a comment

Connections between starvation and immunological memory

Researchers at Emory have been revealing several connections between cells’ responses to starvation and immunological memory. The latest example of this is a paper in Nature Immunology from Rafi Ahmed’s lab, showing that the cellular process of autophagy (literally: self-consumption) is essential for forming and maintaining memory T cells.

This finding has some practical implications for vaccination and could point the way to additives that could boost vaccine effectiveness in elderly humans. Researchers at Oxford have demonstrated that autophagy is diminished in T cells from aged mice, and T cell responses could be boosted in older mice using the autophagy-inducing compound spermidine. Read more

Posted on by Quinn Eastman in Immunology Leave a comment

Cancer’s shield: PD-1

Gina Kolata has a section front story in Tuesday’s New York Times exploring the potential of a relatively new class of anticancer drugs. The drugs break through “shields” built by cancers to ward off the threat posed by the patient’s immune system. Many are based on blocking PD-1, an immune regulatory molecule whose importance in chronic infections was first defined by Emory’s Rafi Ahmed.

Of course, not every cancer research development described as transformative in the New York Times lives up to the hype. But the clinical trial results, reported in the New England Journal of Medicine, are solid enough that the researchers Kolata talks with think they are seeing “a moment in medical history when everything changed.” [Winship Cancer Institute’s John Kauh was a co-author on one of the 2012 NEJM papers.]

Let’s take a moment to examine some of the roots of this story. Rafi Ahmed didn’t set out to study cancer. For the last two decades, he and his colleagues have been studying T cells, parts of the immune system that are critical for responding to infections. Read more

Posted on by Quinn Eastman in Cancer, Immunology 2 Comments

Lampreys hint at origin of ancient immune cells

Lamprey slideStudying lampreys allows biologists to envision the evolutionary past, because they represent an early offshoot of the evolutionary tree, before sharks and fish. Despite their inconspicuous appearance, lampreys have a sophisticated immune system with three types of white blood cell that resemble our B and T cells, researchers have discovered.

Scientists at Emory University School of Medicine and the Max Planck Institute of Immunology and Epigenetics in Freiburg have identified a type of white blood cell in lampreys analogous to the “gamma delta T cells” found in mammals, birds and fish. Gamma delta T cells have specialized roles defending the integrity of the skin and intestines, among other functions.

The results are published in the journal Nature. The finding follows an earlier study showing that cells resembling two main types of white blood cells, B cells and T cells, are present in lampreys.

Read more

Posted on by Quinn Eastman in Immunology Leave a comment

Playing tetherball with HIV

Raise your hand if you played tetherball in grade school. Paul Spearman and his colleagues have a new paper in the journal Cell Host & Microbe probing a protein called “tetherin” that keeps HIV ensnared within cells it is infecting.

The paper includes electron microscopy images that make it possible to imagine a tiny cord attached to a nascent HIV particle within the cell. In these images, we don’t see the tetherin protein directly. However, we do see gold beads, bound to antibodies against the tetherin protein, which indicate where the protein is. The microscopy was performed at Emory’s Robert P. Apkarian Integrated Electron Microscopy Core.

Tetherin is a so-called “restriction factor,” one of several proteins within the cell that interfere with parts of the viral life

The black dots are antibody-linked gold beads, which indicate where the tetherin is. The larger globules are viral capsids.

cycle. Other restriction factors include enzymes that strip the viral RNA or impede the assembly of the viral capsid. Tetherin also interferes with a variety of other viruses such as Ebola.

Some viral proteins such as HIV’s Vpu or Nef fight back against the action of tetherin. Tracking how this kind of arms race has developed can help scientists follow how HIV evolved from similar retroviruses that infect non-human primates. In addition, knowing how tetherin works could be important in efforts to eradicate potential reservoirs of HIV in infected individuals, and in understanding how the virus is transmitted from person to person.

In their paper, first author Hin Chu and Spearman wanted to determine why infection looks different in two different cell types vulnerable to HIV. In T cells, HIV assembly occurs near the membrane, but in macrophages, HIV assembly occurs in an internal compartment.

“The reason that there is a large, internal collection of HIV particles in macrophages is hotly debated,” Spearman explains. “Some see this as a reservoir of virus that is available to spread to other cells, others would say this is a dead-end compartment. We found that the compartment basically goes away when we deplete tetherin, so tetherin is essential to the existence of the virus-containing compartment.”

Chu and his co-workers examined what happened in macrophages when they used a tool called “RNA interference” to turn off the tetherin gene.

Hin Chu

“We found that cell-cell transmission was enhanced when we depleted tetherin. My interpretation is that when tetherin is upregulated in macrophages, viral particles are rapidly internalized and are not transmitted.”

“Another significant finding is that Vpu doesn’t work well in macrophages. If we can determine why it doesn’t work well in this cell type, it will help us understand how Vpu does work so efficiently in other cells such as T cells. Macrophages are one of the most important cell types infected by HIV, so these questions are likely to be very important in how virus spreads and is maintained in infected individuals.”

Spearman is chief research officer for Children’s Healthcare of Atlanta and director of the Children’s Center for Vaccines and Immunology, within the Emory-Children’s Pediatric Research Center. He is also professor and vice chair of research in pediatrics at Emory. Hin Chu is a graduate student in the Microbiology and Molecular Genetics program.

Posted on by Quinn Eastman in Immunology 1 Comment

One reason why SIV-infected sooty mangabeys can avoid AIDS

Sooty mangabeys are a variety of Old World monkey that can be infected by HIV’s cousin SIV, but do not get AIDS. Emory immunologist and Georgia Research Alliance Eminent Scholar Guido Silvestri, MD, has been a strong advocate for examining non-human primates such as the sooty mangabey, which manage to handle SIV infection without crippling their immune systems. Silvestri is division chief of microbiology and immunology at Yerkes National Primate Research Center.

Research shows sooty mangabeys have T cells that can do the same job as those targeted by SIV, even if they don't have the same molecules on their surfaces

A recent paper in the Journal of Clinical Investigation reveals that sooty mangabeys have T cells that perform the same functions as those targeted by SIV and HIV, but have different clothing.

Silvestri and James Else, the animal resources division chief at Yerkes, are co-authors on the paper, while Donald Sodora at Seattle Biomedical Research Institute is senior author.

One main target for SIV and HIV is the group of T cells with the molecule CD4 on their surfaces. These are the “helper” T cells that keep the immune system humming. Doctors treating people with HIV infections tend to keep an eye on their CD4 T cell counts.

In the paper, the scientists show that sooty mangabeys infected with SIV lose their CD4 T cells, without losing the ability to regulate their immune systems. What’s remarkable here is that sooty mangabeys appear to have “double negative” or DN T cells that can perform the same functions as those lost to SIV infection, even though they don’t have CD4.

CD4 isn’t just decoration for T cells. It’s a part of how they recognize bits of host or pathogen protein in the context of MHC class II (the molecule that “presents” the bits on the outside of target cells). Somehow, the T cells in sooty mangabeys have a way to get around this requirement and still regulate the immune system competently. How they do this is the topic of ongoing research.

The authors write:

It will be important to assess DN T cells in HIV-infected patients, particularly to determine whether these cells are preserved and functional in long-term nonprogressors. These efforts may lead to future immune therapies or vaccine modalities designed to modulate DN T cell function. Indeed, the main lesson we have learned to date from this cohort of SIV-infected CD4-low mangabeys may be that managing immune activation and bolstering the function of nontarget T cells through better vaccines and therapeutics has the potential to contribute to preserved immune function and a nonprogressive outcome in HIV infection even when CD4+ T cell levels become low.

Posted on by Quinn Eastman in Immunology Leave a comment