Life-saving predictions from the ICU

Similar to the “precogs” who predict crime in the movie Minority Report, but for sepsis, the deadly response to infection. Read more

Five hot projects at Emory in 2017

Five hot projects at Emory in 2017: CRISPR gene editing for HD, cancer immunotherapy mechanics, memory enhancement, Zika immunology, and antivirals from Read more

Shaking up thermostable proteins

Imagine a shaker table, where kids can assemble a structure out of LEGO bricks and then subject it to a simulated earthquake. Biochemists face a similar task when they are attempting to design thermostable proteins, with heat analogous to shaking. Read more

striatum

Gene editing reverses Huntington’s in mouse model

Disrupting a problematic gene in brain cells can reverse Huntington’s disease pathology and motor symptoms in a mouse model of the inherited neurological disorder, Emory scientists report.

The researchers used CRISPR/Cas9 gene editing, delivered by a viral vector, to snip part of a gene producing toxic protein aggregates in the brains of 9-month old mice. Weeks later, where the vector was applied, aggregated proteins had almost disappeared. In addition, the motor abilities of the mice had improved, although not to the level of control mice.

The results were published June 19, 2017 in Journal of Clinical InvestigationEncouraging Tweet from Scripps MD/author Eric Topol.

The findings open up an avenue for treating Huntington’s as well as other inherited neurodegenerative diseases, although more testing of safety and long-term effects is needed, says senior author Xiao-Jiang Li, MD, PhD, distinguished professor of human genetics at Emory University School of Medicine.

Huntington’s disease is caused by a gene encoding a toxic protein (mutant huntingtin or mHTT) that causes brain cells to die. Symptoms commonly appear in mid-life and include uncontrolled movements, balance problems, mood swings and cognitive decline.

Touted widely for its potential, CRISPR/Cas9 gene editing has not been used to treat any neurodegenerative disease in humans. Several concerns need to be addressed before its use, such as effective delivery and the safety of tinkering with DNA in brain cells. A similar approach, but using a different technology (zinc finger nucleases), was reported for Huntington’s disease in 2012.  Read more

Posted on by Quinn Eastman in Neuro Leave a comment