Saliva-based SARS-CoV-2 antibody testing

As the Atlanta area recovers from Zeta, we’d like to highlight this Journal of Clinical Microbiology paper about saliva-based SARS-CoV-2 antibody testing. It was a collaboration between the Hope Clinic and investigators at Johns Hopkins, led by epidemiologist Christopher Heaney. Infectious disease specialists Matthew Collins, Nadine Rouphael and several colleagues from Emory are co-authors. They organized the collection of saliva and blood samples from Emory COVID-19 patients at several stages: being tested, hospitalized, and recovered. Read more

Peeling away pancreatic cancers' defenses

A combination immunotherapy approach that gets through pancreatic cancers’ extra Read more

Immune cell activation in severe COVID-19 resembles lupus

In severe cases of COVID-19, Emory researchers have been observing an exuberant activation of B cells, resembling acute flares in systemic lupus erythematosus (SLE), an autoimmune disease. The findings point towards tests that could separate some COVID-19 patients who need immune-calming therapies from others who may not. It also may begin to explain why some people infected with SARS-CoV-2 produce abundant antibodies against the virus, yet experience poor outcomes. The results were published online on Oct. Read more

streptomycin

From the genetic code to new antibiotics

Biochemist Christine Dunham and her colleagues have a new paper in PNAS illuminating a long-standing puzzle concerning ribosomes, the factories inside cells that produce proteins.

Ribosomes are where the genetic code “happens,” because they are the workshops where messenger RNA is read out and proteins are assembled piece by piece. As a postdoc, Dunham contributed to Nobel Prize-winning work determining the molecular structure of the ribosome with mentor Venki Ramakrishnan.

Ribosomes are the workshops for protein synthesis and the targets of several antibiotics

The puzzle is this: how messenger RNA can be faithfully and precisely translated, when the interactions that hold RNA base pairs (A-U and G-C) together are not strong enough. There is enough “wobble” in RNA base pairing such that transfer RNAs that don’t match all three letters on the messenger RNA can still fit.

Read more

Posted on by Quinn Eastman in Uncategorized Leave a comment