Overcoming cardiac pacemaker "source-sink mismatch"

Instead of complication-prone electronic cardiac pacemakers, biomedical engineers at Georgia Tech and Emory envision the creation of “biological Read more

Hope Clinic part of push to optimize HIV vaccine components

Ten years ago, the results of the RV144 trial– conducted in Thailand with the help of the US Army -- re-energized the HIV vaccine field, which had been down in the Read more

Invasive cancer cells marked by distinctive mutations

What does it take to be a leader – of cancer cells? Adam Marcus and colleagues at Winship Cancer Institute are back, with an analysis of mutations that drive metastatic behavior among groups of lung cancer cells. The findings were published this week on the cover of Journal of Cell Science, and suggest pharmacological strategies to intervene against or prevent metastasis. Marcus and former graduate student Jessica Konen previously developed a technique for selectively labeling “leader” Read more

SCN8A

Epilepsy pick up sticks

Imagine the game of pick up sticks. It’s hard to extract one stick from the pile without moving others. The same problem exists, in a much more complex way, in the brain. Pulling on one gene or neurotransmitter often nudges a lot of others.

Andrew Escayg, PhD

That’s why a recent paper from Andrew Escayg’s lab is so interesting. He studies genes involved in epilepsy. Several years ago, he showed that mice with mutations in the SCN8A gene have absence epilepsy, while also showing resistance to induced seizures. SCN8A is one of those sticks that touches many others. The gene encodes a voltage-gated sodium channel, involved in setting the thresholds for and triggering neurons’ action potentials. Mutating the gene in mice modifies sleep and even enhances spatial memory.

Escayg’s new paper, with first author Jennifer Wong, looks at the effect of “knocking down” SCN8A in the hippocampus in a mouse model of mesial temporal lobe epilepsy. This model doesn’t involve sodium channel genes; it’s generated by injection of a toxin (kainic acid) into the brain. The finding suggests that inhibiting SCN8A may be applicable to other forms of epilepsy. Escayg notes that mesial temporal lobe epilepsy is one of the most common forms of treatment-resistant epilepsy in adults.

Knocking down SCN8A in the hippocampus 24 hours after injection could prevent the development of seizures in 90 percent of the treated mice. “It is likely that selective reduction in Scn8a expression would have directly decreased neuronal excitability,” the authors write. It did not lead to increased anxiety levels or impaired learning/memory.

Currently, no available drugs target Scn8a specifically. However, antisense approaches for neurodegenerative diseases have been gaining ground – perhaps epilepsy could fit in.

Posted on by Quinn Eastman in Neuro Leave a comment