Beyond the amyloid hypothesis: proteins that indicate cognitive stability

If you’re wondering where Alzheimer’s research might be headed after the latest large-scale failure of a clinical trial based on the “amyloid hypothesis,” check this Read more

Mother's milk is OK, even for the in-between babies

“Stop feeding him milk right away – just to be safe” was not what a new mother wanted to hear. The call came several days after Tamara Caspary gave birth to fraternal twins, a boy and a girl. She and husband David Katz were in the period of wonder and panic, both recovering and figuring out how to care for them. “A nurse called to ask how my son was doing,” says Caspary, a developmental Read more

Focus on mitochondria in schizophrenia research

Despite advances in genomics in recent years, schizophrenia remains one of the most complex challenges of both genetics and neuroscience. The chromosomal abnormality 22q11 deletion syndrome, also known as DiGeorge syndrome, offers a way in, since it is one of the strongest genetic risk factors for schizophrenia. Out of dozens of genes within the 22q11 deletion, several encode proteins found in mitochondria. A team of Emory scientists, led by cell biologist Victor Faundez, recently analyzed Read more

Ruth Ley

How intestinal bacteria influence appetite, metabolism

Pathologist Andrew Gewirtz and his colleagues have been getting some welldeserved attention for their research on intestinal bacteria and obesity.

Briefly, they found that increased appetite and insulin resistance can be transferred from one mouse to another via intestinal bacteria. The results were published online by Science magazine.

Previous research indicated intestinal bacteria could modify absorption of calories, but Gewirtz and his colleagues showed that they influence appetite and metabolism (in mice)

“It has been assumed that the obesity epidemic in the developed world is driven by an increasingly sedentary lifestyle and the abundance of low-cost high-calorie foods,” Gewirtz says. “However, our results suggest that excess caloric consumption is not only a result of undisciplined eating but that intestinal bacteria contribute to changes in appetite and metabolism.”

A related report in Nature illustrates how “next generation” gene sequencing is driving large advances in our understanding of all the things the bacteria in our intestines do to us.

Gewirtz’s laboratory’s discovery grew out of their study of mice with an altered immune system. The mice were engineered to lack a gene, Toll-like receptor 5 (TLR5), which helps cells sense the presence of bacteria.

Read more

Posted on by Quinn Eastman in Immunology Leave a comment