Anti-inflammatory approach suppresses cancer metastasis in animal models

An anti-inflammatory drug called ketorolac, given before surgery, can promote long-term survival in animal models of cancer metastasis, a team of scientists has found. The research suggests that flanking chemotherapy with ketorolac or similar drugs -- an approach that is distinct from previous anti-inflammatory cancer prevention efforts -- can unleash anti-tumor immunity. The findings, published in Journal of Clinical Investigation, also provide a mechanistic explanation for the anti-metastatic effects of ketorolac, previously observed in human Read more

I3 Venture awards info

Emory is full of fledgling biomedical proto-companies. Some of them are actual corporations with employees, while others are ideas that need a push to get them to that point. Along with the companies highlighted by the Emory Biotech Consulting Club, Dean Sukhatme’s recent announcement of five I3 Venture research awards gives more examples of early stage research projects with commercial potential. This is the third round of the I3 awards; the first two were Wow! Read more

Take heart, Goldilocks -- and get more sleep

Sleeping too little or too much increases the risk of cardiovascular events and death in those with coronary artery disease, according to a new paper from Emory Clinical Cardiovascular Research Institute. Others have observed a similar U-shaped risk curve in the general population, with respect to sleep duration. The new study, published in American Journal of Cardiology, extends the finding to people who were being evaluated for coronary artery disease. Arshed Quyyumi, MD and colleagues analyzed Read more

RTS

Why the RTS,S malaria vaccine is such a tease

Continuing from Monday’s post, IMP graduate student Taryn McLaughlin explains why the most advanced malaria vaccine is actually not that great.

Malaria has plagued humans for thousands of years. And while we have known the causative agents of the disease- for 150 years, malaria remains scientifically frustrating. In fact, one of the most common treatments for the disease is simply a derivative of a treatment used in ancient China.

One of the most frustrating features is that there is no sterilizing immunity. In other words, for many diseases once you are infected with the microbe responsible, you develop an immune response and then never get the disease again. Not so with malaria. Compounded with terrible treatment and the impracticality of ridding the world of mosquitos, a vaccine sounds like pretty much our only hope. And yet this has been scientifically challenging and unsuccessful for many many reasons.

In fact a number of vaccine candidates have come along in the last few decades that have seemed SO promising only to go on and break our hearts in clinical trials. The most recent of which is a vaccine that goes by the name RTS,S (named for the different components of the vaccine).

As a quick refresher, Plasmodium enters the body via mosquitos as a sporozoite. It then migrates through the skin going into the blood and eventually making it’s way to the liver. Here it goes inside liver cells where it replicates and turns into merozoites (such that one sporozoite becomes thousands of merozoites). This stage of the disease is asymptomatic. Some time later, all those merozoites burst out of your liver cells causing mayhem and invading your red blood cells. Here, they once again replicate and metamorphose. Fun times. Anyways, during the last stage, some of those plasmodium become gametes which get eaten by mosquitos thus completing the life cycle. Read more

Posted on by Quinn Eastman in Immunology Leave a comment