‘Genetic doppelgangers:’ Emory research provides insight into two neurological puzzles

An international team led by Emory scientists has gained insight into the pathological mechanisms behind two devastating neurodegenerative diseases. The scientists compared the most common inherited form of amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD) with a rarer disease called spinocerebellar ataxia type 36 (SCA 36). Both of the diseases are caused by abnormally expanded and strikingly similar DNA repeats. However, ALS progresses quickly, typically killing patients within a year or two, while the disease Read more

Emory launches study on COVID-19 immune responses

Emory University researchers are taking part in a multi-site study across the United States to track the immune responses of people hospitalized with COVID-19 that will help inform how the disease progresses and potentially identify new ways to treat it.  The study is funded by the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health. The study – called Immunophenotyping Assessment in a COVID-19 Cohort (IMPACC) – launched Friday. Read more

Marcus Lab researchers make key cancer discovery

A new discovery by Emory researchers in certain lung cancer patients could help improve patient outcomes before the cancer metastasizes. The researchers in the renowned Marcus Laboratory identified that highly invasive leader cells have a specific cluster of mutations that are also found in non-small cell lung cancer patients. Leader cells play a dominant role in tumor progression, and the researchers discovered that patients with the mutations experienced poorer survival rates. The findings mark the first Read more

Richard Kahn

What are rods and rings?

This image of mouse embryonic fibroblasts comes from Cara Schiavon, a graduate student in Rick Kahn’s lab in the Department of Biochemistry. It was impressive enough to capture interest from Emory Medicine‘s graphics designer Peta Westmaas. The light green shapes are “Rods and Rings,” structures that were identified just a few years ago by scientists studying how cells respond to antiviral drugs, such as those used against hepatitis C.

The rod and ring structures appear to contain enzymes that cells use for synthesizing DNA building blocks. Patients treated with some antiviral drugs develop antibodies against these enzymes.

The turquoise color represents microtubules, components of cells’ internal skeletons. The orange color shows DNA within nuclei. The spots in the nuclei are areas where DNA is more compact. The overall image is a “z-stack projection” acquired using the Olympus FV1000 confocal microscope in Emory’s Integrated Cellular Imaging Core.

Posted on by Quinn Eastman in Uncategorized Leave a comment

Navigating monstrous anticancer obstacles

A new PNAS paper from geneticist Tamara Caspary’s lab identifies a possible drug target in medulloblastoma, the most common pediatric brain tumor. Come aboard to understand the obstacles this research seeks to navigate. Emory library link here.

Standard treatment for children with medulloblastoma consists of surgery in combination with radiation and chemotherapy. Alternatives are needed, because survivors can experience side effects such as neurocognitive impairment. One possibility has emerged in the last decade: inhibitors of the Hedgehog pathway, whose aberrant activation drives growth in medulloblastoma.

Medulloblastoma patients are caught “between Scylla and Charybdis”: facing a deadly disease, the side effects of radiation and/or existing Hedgehog inhibitors. From Wikimedia.

As this 2017 Oncotarget paper from St. Jude’s describes, Hedgehog inhibitors are no fun either. In adults, these agents cause muscle spasms, hair loss, distorted sense of taste, fatigue, and weight loss. In a pediatric clinical trial, the St. Jude group observed growth plate fusions, resulting in short stature. The drug described in the paper was approved in 2012 for basal cell carcinoma, a form of cancer whose growth is also driven by the Hedgehog pathway. Basal cell carcinoma is actually the most common form of human cancer, although it is often caught at an early stage that doesn’t require harsh treatment.

Caspary’s lab studies the Hedgehog pathway in early embryonic development. In the PNAS paper, former graduate student Sarah Bay and postdoc Alyssa Long show that targeting a downstream part of the Hedgehog pathway may be a way to avoid problems presented by both radiation/chemo and existing Hedgehog inhibitors. Read more

Posted on by Quinn Eastman in Cancer, Neuro Leave a comment