Two items relevant to long COVID

One of the tricky issues in studying in long COVID is: how widely do researchers cast their net? Initial reports acknowledged that people who were hospitalized and in intensive care may take a while to get back on their feet. But the number of people who had SARS-CoV-2 infections and were NOT hospitalized, yet experienced lingering symptoms, may be greater. A recent report from the United Kingdom, published in PLOS Medicine, studied more than Read more

All your environmental chemicals belong in the exposome

Emory team wanted to develop a standard low-volume approach that would avoid multiple processing steps, which can lead to loss of material, variable recovery, and the potential for Read more

Signature of success for an HIV vaccine?

Efforts to produce a vaccine against HIV/AIDS have been sustained for more than a decade by a single, modest success: the RV144 clinical trial in Thailand, whose results were reported in 2009. Now Emory, Harvard and Case Western Reserve scientists have identified a gene activity signature that may explain why the vaccine regimen in the RV144 study was protective in some individuals, while other HIV vaccine studies were not successful. The researchers think that this signature, Read more

phospholipids

Burning fat like a baby

Newborn humans and hibernating mammals have high levels of brown adipose tissue, which they use to generate heat. Adult humans generally don’t have abundant brown adipose tissue, even if they have lots of “white” fat. Increasing brown fat’s activity may be an approach to treat obesity and related metabolic disorders.

Recently researchers identified an enzyme called Them1 (thioesterase superfamily member 1) as a factor that limits heat generation in brown adipose tissue. Emory biochemist Eric Ortlund and his lab showed how part of the Them1 enzyme binds a certain type of lipid molecule, and also how that part of the enzyme anchors the enzyme close to lipid droplets in adipose cells. Former graduate student Matt Tillman, now a postdoc at Duke, was the first author of the new paper in Proceedings of the National Academy of Sciences.

“In this study, we show Them1 contains a lipid sensor module that detects specific lipids within the cell to regulate its activity,” says Tillman.

In brown adipose cells, the lipid-sensing domain of Them1 is needed for localization around lipid droplets

From Tillman et al PNAS (2020)

He and his colleagues showed that a lipid known for its role in cell signaling, lysophosphatidylcholine or LPC, inhibits Them1 activity, which in turn activates thermogenesis in brown adipose tissue. In contrast, other fatty acids that serve as fuel tend to activate Them1. This regulatory system within Them1 allows the cell to sense its metabolic state and decide when to burn or conserve fat.

Read more

Posted on by Quinn Eastman in Uncategorized Leave a comment

Biochemists grab slippery target: LRH-1

To fight fat, scientists had to figure out how to pin down a greasy, slippery target. Researchers at Emory University and Baylor College of Medicine have identified compounds that potently activate LRH-1, a liver protein that regulates the metabolism of fat and sugar. These compounds have potential for treating diabetes, fatty liver disease and inflammatory bowel disease.

Their findings were recently published online in Journal of Medicinal Chemistry.

LRH-1 is thought to sense metabolic state by binding a still-undetermined group of greasy molecules: lipids or phospholipids. It is a nuclear receptor, a type of protein that turns on genes in response to hormones or vitamins. The challenge scientists faced was in designing drugs that fit into the same slot occupied by the lipids.

“Phospholipids are typically big, greasy molecules that are hard to deliver as drugs, since they are quickly taken apart by the digestive system,” says Eric Ortlund, PhD, associate professor of biochemistry at Emory University School of Medicine. “We designed some substitutes that don’t fall apart, and they’re highly effective – 100 times more potent that what’s been found already.”

Previous attempts to design drugs that target LRH-1 ran into trouble because of the grease. Two very similar molecules might bind LRH-1 in opposite orientations. Ortlund’s lab worked with Emory chemist Nathan Jui, PhD and his colleagues to synthesize a large number of compounds, designing a “hook” that kept them in place. Based on previous structural studies, the hook could stop potential drugs from rotating around unpredictably. Read more

Posted on by Quinn Eastman in Uncategorized Leave a comment